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C11APTER ONE

INODUCTION

During the last decade, considerable attenticn has been given

to the desigr of parallel computers and the development of parallel numer-

ical procedures for identification, estimation and control which are

implementable on these machines. As an introduction to this topic, some

background material is given in Section 1.1. A brief review of exist-

ing parallel algorithms for identification, estimation and control is

cresented in Section 1.2. The motivation and significance of the re-

search reported in this report are discussed in Section 1.3. Finally,

the objectives and contributions cf this report are stated in Section 1.4.

i." Background

The design of an automatic control system generally involves

the selection of additional components which usuall' have adjustable

parameters such that the overall system meets a desired perfo--manuce

specification. For example, this performance specification may be

formulated in terms of the minimization of an error criteria, settling

time, energ/ constraint or it may simply require a stable respcnse.

The performance index provides a quantitative measure of system perform-

ance and is chosen to emphasize important system characteristics. This

type of quantitative measure is very important for parameter idenfica-

tion, state estimation, and for the design of optimal and subcptimal

control systems.



The early 'crk in the area cf zara:-eter :ientification can

be attributed to Nyquist [i and 3ode [27 in which frequencv analysis

methods were used in conjunction with lolarith.-ic frequency diagrams

to fit oarametric models to data.

M..ore recently, parametric models "sed in "modern" control

theory have been formulated in terms of state equations. The need to

determine such models from experimental data has led to a continual

effort to improve parameter identification and state estimation pro-

cedures. Probably the oldest and most widely known methods for perform-

ing these tasks include: maximum likelihood techniques [3], Kalman

filters [h, weighted least squares procedures ,5], and stochastic ap-

proximation [6]. These sequential methods, however, may recuire a

prohibitive amount of computer time to converge, if in fact, convergence

occurs at all.

Since the introduction of time domain methods and the develop-

ment of optimal control theory, a drm-atic change in the design of auto-

matic control systems has occurred. Because the use of opztLmal control

.heory generally results in the need to solve a highly nonlinear two-

ocint boundary value problem T ucn researc: has been conducted

n tne area of numerical methods for solving "TB7?'s. Currently, the

most popular methods for solving NTPBVP's include iterative techniques

such as shooting methods [7] and quasi-linearization [8] or non-itera-

tire methods such as invariant imbedding F9. These methods, however,

suffer from the fact that convergence to the optimal solution is rather

time consuming if these mrocedures are =--lemented on a conventional

computer. One way to correct this problem night be to design faster

2
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C xmu.er systems, or simply develop more efficient algori--.s.

Aopaxer~ty at this tie, many falt that the n'erical me-hods develop-

ed to date were rather efficient (although sequential in nature; and

that -he -roblem of excessive computation ti-e cculd be nost easily

d-'_ -'4wth by the design of faster (parallel) co=u-ers.

In "view of the need for faster computers, the computer indus-

try has seen a significant change in the architecture of modern computers.

This has led to the development of parallel computers which are capable

of performing the same set of instructions on many data sets simulta-

neously (see Figure 1.1). Basically, a parallel computer can be viewed

as a set of processing elements (PE's), each of which has its own local

memo, (LM) and a repertoire of arithlmetic and lsgical instructions.

The role of the central processor (CP) is to coordinate the efforts of

each PE while the LM is used for temporarily storing intermediate results.

Each PE is synchronized to perform the same inszruction at the same time

-n data located in its own memory. Wher an instruction set has been

completed by each processor, the results are transferred to global memcry

-where =he central processor interprets the resu:lts and decides whether

.o conoinue cnomputa-ions or halt. Note that if 7 processors are avail-

able and calculations are organized such that each PE is being fully

utilized, then the speed of computation would be :7 times faster than the

sneed f a single PE. it is clear, however, that achieving this increase

in speed requires great care in structuring ccmputaticnal algorithms.

Recognizing this fact, Larsen, et al. IO-, ilw were the first

to seriously consider using the parallel coruting capabilities :f

modern parallel computers to allow the implementatior of nonlinear

3
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e3timation and control procedures. :4uch of the work in these papers

Was primarily concerned with restructuring dynar-ic programming so that

many calculations could be performed by a computer with the facility

:.cr large scale parallel processing. Unfortunately, in many cases,

the number of processors required by this method can be too extensive

to be very practical.

For a number of years after the initial efforts of Larsen and

Tse, it appeared that the development of parallel algorithms for non-

linear estimation and control had ceased. This occurrence might have

been due to the many problems associated -with the Illiac IV (the first

truly parallel computer) F'2.

Recently, however, there has been a renewed interest in parallel

algorithms due to the successful development of many parallel computers

(see Table 1.1). Due to the availability of these machines, many new non-

linear estimation and control algorithms have been proposed, the details

of which, will be discussed in the following section.

1.2 A Su.vey of Parallelism in 7eniff.caticn,
Zstixation and Control

The idea of structuring estimation and control algorithms such

--at many operati:ns may be performed simultaneously has only recently

been considered. In fact, this area is so new that at the present time

only a small number of parallel algorithms exist to perform such tasks.

To survey these methods, we will consider the topics of identification,

estimation and control separately in the remainder of this section.

Parallel Parameter Identification

In reference [31, Reid is concerned with identifying the

parameters of a linear time invariant system from observing noise free

5
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output measurements. Basically, Reid's method employs an algebraic

representation of the carameter sensitivity variables to efficiently

and accurately obtain the system component matrices and component sen-

sitivietles "hich are then used to form a linear system of equations

and a small number of :uadrature integrals. The parallel aspects of

this algorithm lie in the fact that the quadrature integrals may be

evaluated simultaneously. Aso, parallelism can be exploited in solv-

ing the linear system of equations by utilizing the procedures discussed

in references lhJ and [l5].

The structure of Reid's algorithm also leads to a natural set

of conditions which are useful in determining if a system is identifi-

able. For example, for a system :o be locally identifiable, the sensi-

tivi-ty matrix must have rank p where p is the number of ,unknown parameters.

Other results on "structural identifiability," "excitation identifiability"

and their "quality" are also reported by Reid in references [131 and L16J.

Because Reid relies heavily on linearity and other properties of linear

systems in the development of his method, it is restricted to linear

dynamical systems. This, along vith the fact that measurement noise and

process noise are omitted from the problem formulation, seriously limits

the application of this method.

Parallel State Estimation

The approach to the linear state estimation problem taken in

reference [1]7 is to develop an explicit square-root algorithm which

allows parallel processing with little communication between processors.

The method is based upon a modification of the Kalman filter algorithm.

7



Basically, an inter';al of data is partiti-rned into N subintervals an!

state estina-:es are claculated based only on data within each subirter-

val. These 'a-cuations are performed simultaneously by N processors

"w'orking independently. Wher. each processor completes its task, some

global calculations are performed and the results are combined to obtain

an overall optima. estimate at the subinterval endpoints. At this point,

the estimates at the subinterval interior points may be updated if

desired.

The most expensive computations required by this procedure is

estimating the states at the subinterval endpoints. Generally, this

procedure requires about lh-h0% more computations than a conventional

Kalman filter but, because many of these computations can be performed

in parallel, the actual execution time may indeed be much less. As

pointed out by Kalaith [17], for this method to be faster than a

single Kalman filter, the system should be high order, have a sparse

system matrix and the state estimates must be desired infrequently

:compared to the number of data points. To help speed computations, a

square-root doubling formu.la is introduced by Kalaith for calculating

:he steady-state covariance matrix of time invariant systems.

XIthough Kalaith argues that the parallel square-root algo-

rithm can be more efficient than a single Kalman filter, this is not

verified through simulation. Also, it should.be noted that this method

is only applicable to state estimaticn of linear systems.

Parallel Maximum Likelihood Estimatior.

In reference 7ll, Larsen and Tse restructure the dynamic pro-

graing method to estimate the maximuam likelihood trajectory of a

8
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nonlinear disrete-ime system. The approach taken by Larsen and Tse

is to decopose the dynamic programming algorit.- nto three rarts w ich

consist of a .-arallel states algorithm, a carallel noises a2gcrithm,

and a parallel state and stages algorithm.

The ma.cr advantage of the parallel states =_'gorithm is that

the calculations performed by each processor are the same. Although

this is highly desirable, there are several "overhead" calculations (such

as binary search and compare) associated with the parallel noises algo-

rithm which require moderate communication bet-ween processors and

peripheral devices.

Also, the macor shortcoming of this approach lies in the fact

th'at he parallel states and stages algorithm can reuire a prohibitive

nuamber of processors. For exa=Dle, for a problem w4th 10 states and

100 stages, then 10x100 = 1000 processing elements would be required.

Although these Processors need not be very sophisticated, such a large

n'=ber of them may lead to reliability and synchronization problems.

Finally, Larsen and Tse do not discuss the application of their

parallel iyna=ic rora-ing algorit'hm to any problem of cractical inter-

est.

-arallel State and ?arame-er Estimation

The parallel state and parameter (SAP) estimation algorithm re-

orted by 7argeon, el: a!. 4-n reference _13, Ias been ieeloped

for discrete linear time invariant systems whose outputs are corrupted

by a white Gaussian noise (WGN) process. This parallel 3aysian algorithm

enploys man:- exenied K:al s n filters .EFK's' which simultane-s> cerform

9



the SAP estimation functions. The integration of the a posteriori

density function required by this method is approximated by a finite

sum whose elements may be computed independently. Note that this method

of integration is a variation of the rectangle rule, which is known to

be extremely inaccurate unless many grid points are used. Since the

number of parallel filters is equal to the number of grid points, it is

entirely possible that a rather large number of filters may be required

to implement this procedure; especially if accuracy is a major consid-

eration.

As an indicator of performance, the parallel SAP estimation

algorithm was tested by solving both a first and second order linear

state estimation problem. For these simple examples, the simulations

performed in reference 118] indicate that 8-20 parallel filters could

be used without much loss in accuracy of the estimates. Although this

is encouraging, it seems more appropriate to test this method on a low

order, but highly nonlinear, process in which both the state and para-

meters of the process must be estimated. For this problem, it seems

clear that a trade-off must be made between accuracy and the number of

parallel filters required for the procedure to converge.

Parallel Control Algorithm

One of the first attempts to use parallelism to speed up

optimal control zomputations was reported by Larsen and Tse in refer-

ence [10]. := this paper, a parallel dynamic programming algorithm

for solving both deterministic and stochastic nonlinear control

problems was developed.

10



Basically, their method is based upon a decomposition of the

dynamic progra;=ing algorithm into a parallel states algorithm, a par-

allel state and stages algorihm, a parallel decisions a.gorithm, a

parallel successive approximations algorithm, a parallel shift vector

algorithm, and a parallel state increment dynamic programming algorithm.

Larsen and Tse's method suffers from the sama problems as

their a:dimum likelihood method previously discussed, as -well as the

fact that the parallel state increment dynamic programming algorithm

employs Euler's method to integrate the right-hnd side of a nonlinear

system's equations of motion. Since it is well known that -uler's

method is not verT accurate unless extremely small steps are taken, it

atoear-s that this approach is of little practical value.

1.3 Motivation and Sianificance

Although nonlinear optimal control and estimation theory has

been !ovn for a number of years, the development of practical numeri-

cal methods based upon this theory has been relatively slow. As

pointed out in the previous section, the major problems with existing

methods have been a lack of accuracy and excessive coputation time and

that the use of parallelism has been proposed to alleviate such problems.

The survey of existing parallel estimation and control algo-

rithms indicates that there exists a need to develop more efficient

parallel procedures based upor. modern nonlinear estimation and control

theory. This fact has motivated an investigation of several parallel

procedures with the hope that the computation time reau.ired for con-

vergence of the new procedures could be significantly less than

existing methods.

11-



The develoment of more efficient Daralel estLnaticn and

control alg'-m is significant since:

Sar slelism sho"uli enable the design of nonlinear control systems

w.t.u. the need for apprcximating the behavior of highly nonlinear

equations of motion by a linearized model.

" Parallel implementation could speed up computation time enough to

pertait modern nonlinear identification, estimation, and control

algorithms to be executed in real time.

With this in mind, the objectives and contributions of this

thesis will now be clearly stated.

_.4 :bectives and Contributions

in Section 1.2 a survey of some existing parallel identifica-

:ion, estimation, and control algorithms and an evaluation of their

• ;sefuLness and drawba ks was made in terms of accuracy, speed, pro-

:essor requirements and numerical efficiency. From this survey, it is

cear that none of the existing parallel algoritzs meet all of these
re'eeln~ ainit~ "e of thes

reauirement s. _n ;. w of the above, the cbectives of this report are

tc:

" Develop computationally efficient procedures for the identification,

estimation and control of nonlinear dynamical systems which employ

a high degree of parallelism but at the same time are not extrava-

gant in the utilization of processing elements.

* investigate b o th analticallv and through, :cmuter simulation the

_znvergence pr:-erties of the newly developed procedures.

12



W* 
ar ie -the i =-.=xr~en t s obtai a le ttr ogh - ~ t e o lnear

-an .2.heari.zed eauatios cf =c-:z'cr whe. des.trirg crtrcllers

:o)r no.-r-esr cy ~ systens.

" Stud:, :-e rzc -stn-zss --fb'- 7"ar-'Ie. rli and ee~n h

valu:es c ertain algcritim parane-.ers sc --*at near Zern'=

ance wil result 'cr a v:ariety zff Droblens.

" ?ropcose a marallel zommuter architecture suit:able fcr -=Lementing

the newly developed parallel m.ethods.

The major contributions which resulted froa c~ctng this

research a-e:

" Devecn~ment of a :-ass of taallrr-w us-e~r ~~sfcr

unconstrained mninizat ion.

" Establ-is'--e-.o a strategy focr crialyseetigte nubrc2

subinter,.als and mesh -coin-s sscci-ated -nth ara-"el s5OCt-.=g

apcoroach- to sclvins nc" l:near two-ooint. bcundary value rbes

* e-elc~ntof a crscedure whi4ch a-uto~at4ca*.- ad-uSt.s -:*e step size

of a zaraLlel credictor-correvtor inrte grat icr.) scheme t aint-afn a

desired level of accuracy.

* emonstration wit, re-presentative exanes that the newly developed

parallel algorithmzs dc indeed perform better than existing sequential

meth~ods in terms of sgreed, accuracy, and reliability.

13



* p: ca:cz sc the met, ?VM, a.d M nethods tc solving mz:

-problems ksuch as nonlinear estimation and control

rms ather tha. stati: -Ztimizatir orobje=s

al~ebrai2 ,  s1
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CF.L T- R TWO

PAPAI2 UGOITLNIS PC.R TH. TDn_ CAT .. ,,

ESTYA~N A :TRB0: CF D :NEA3 D Av'Ai SYSTEMS

In this chapter, a collection of parallel algorithms are

described which can be used to solve ncnlinear estimation and zontrol

problems on a computer with the facility for large scale parallel

processing. We shall begin our discussion of these techniques by

formulating the nonlinear estimation and control problems in Sections

2.1.1 and 2.2.1 respectively. In Section 2.1, parallel methods for

simultaneous state and parameter (SAP) estimation are presented while

narallel control algzorit.ms are discussed in Section 2.2. in Sectin

.3 , these methods are combined so that the estimation -nd contrcl'

f nctions can be performed on-line in an adaptive fashion.

It should be emnhasized that the goal of this chapter is tz

.evelo.p algorith--ms hich possess a high degree of -zrzale.ism but at

the same time do not require an excessive number of -rocesscrs. This,

__ong "pith the fact that the parallel algorithm presen-ed in Sections

2.1, -2.2, and 2.3 should be capable of handling the nonlinear trocess

equations directly, represent two of the contributions of this report

Finally, one of the more subtle contributions developed in

this chapter is an adantive mesh selection algorithm which optimally

places the mesh points needed by the method of parallel shooting. Note

that the mesh point placement is optimal in the sense of minimizing the

maximum local trurncation error associated with integrating differential

ecuations numerically.

15



2.1 ars- e -. !entifizaticn a.d State Estimation . orithn

In this section, two methods are presented for simultaneously

estiating the state and identif'ying the parameters of a nonlinear

dynamical system. The first method is based upon solving a nonlinear

two-point boundary value problem (NTPBVP) while the second method

requires a direct minimization of a suitably defined cost function.

Before the details of these methods are given, a formal statement of

the state and parameter (SAP) estimation problem is in order.

2.1.1 P roblem Statement

Consider the nonlinear dynamical system and measurement

model represented by

( ) =f[x(-.),t] + G[x(t),t](t) (2.1-1)

z(t) = h[x(t),t] + v(t) (2.1-2)

where

x(t)E1t: is an augmented state vector which includes the

unknown parameters, w(t)eRp is a process noise, and z(t)ee

is the measurement vector which has been ccrrupted by the

measurement noise v(-)

It is assumed that:

* The initial state of this process is Gaussian with mean m and
xo

covariance Ex(t )T ( )I

0 0 0 xo

e The noise processes w(t) and v(t) are mutually independent zero-mean

-white Gaussian noise (WGN) processes with corresponding covariance

matrices

16



= w)6ts t < t s < t

and

E{v t v ( S)}t t .( ) , -s) < t , S < t .,

Q(t) and R: a:-e j ositi've defPite ss- 3C at kt; a:r

R-3.',) exist E r- t, .

Let us define Z, =Z(T) It_<T<t} as the accumulated noisy state mea-

surements up to and including time t. The problem is to obtain an

estimate of the augented state vector x(t) at t-ze t or the basis

of the observations represented by Z • Cur interest wil! be
A

restricted to the case when s > t in which case xtIS is referred to

as a "smoothed" estimate of x(t).

By defining pfx;: Z.] as the a posteriori probability that

the state vector ass'tmes the value x at ti7e t conditioned upon

the measurement data represented by Z., the maximum-a-posteriori (MAP)

estimate of Is (denoted as xW.s ,-s defined by

p[IMAP;tlz = Maxpp[x;tIz ] t < < s < t, (2--3

it has been shown (cf. 2]) that the maximization

indicated in eqn. (2.1-3) is equivalent to finding the deterministic

signal, 0(t) tE[-o,t f ] which minimizes the functional

; I i It )-m I I
0

+ t (f{ z(t)-h{R(t),+t2] 2  +1 2) _ )t (

17
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subject t o the dyramc equality ccnstraint given by

L(x-..,r r, ) t._ ,. . ] GxR~ t') ,t1 ] ( )'t,[ o  -. "  2.1.-5)

Note -that the SAP estimation problem has been converted to a

detei-- nistic cpti-ization problem aid that once w(t) is found such that

eqn. (2.1-h) is minimized, we may integrate eqn. (2.1-5) to obtain the

MAP estimate of R(t) provided (t0 ) is known. Although this approach

to the SAP estimation problem is not new, the use of parallelism to expe-

dite the search for 'a(t) as well as in integrating eqn. (2.1-5) has not

been considered before. These ideas are explored further in the next

section.

2.1.2 Indirect State and Parameter Estimation Alzorithr

in this section, a parallel numerical method based upon the

calculus of variations is presented for simultaneously estimating the

state and parameters of a nonlinear dynamical system. Although this

method can be used to solve state and parameter (S.AP) estimation

problems which do not incoroorate process noise into the state model,

the method -ll be nresented assuming that a noise process is used

to account ftr modelling uncertainties. With this in mind, consider

the optimizaticn problem defined by eqns. (2.1-4) and (2.1-5).

To find *(t) using the calculus of variations, let the

Hamiltonian be defined as

H = [Iz(t)-h[(t),t]II2_ + HI(t)w 2

+(t)(f(2(t),t]+G['(t),.]0(t)} '; tE[t ° t (.121

Then the necesssa-- conditions for optimality become:

18



x~)= a k(t = -x t)zGL(t), tt (2.12-2
0..t (2.1.2-2)

2(t f" :x')_ , tl + Sit, Tt Gtt] 'r(:)q"

= R(t) F" (t) z(t) (t)

;Ri. 7 
i

91 Rt) t] (2.!.2-4)

The boundazy condit cns associated "ith eqns. (2.1.2-2)-

(2.1.2-4) are given by

(t) = - i(:) - m (2..2-5a)

X(tf) = C (2.1.2-in)

In, .rincimle, the soluzicr. to the nor.linear two-ooirt

bou.dary value pro'lem (N=TP) represented by eqns. (2.1.2-2), (2.1.2-3),

(2.1.2-4) and (2.1.2-5) can be obtained using ordimaz-" shooting T7-

but, because computational problems can arise when integrating

eqns. (2.1.2-3) and (2.1.2-h) forward in time, the following parallel

shooting procedure, which is a modification of Keller's approach [2:,

is recommended.

?arallel Shooting Solution of Nonlinear SAP Estimation Problems

To illustrate the procedure eqns. 2.1.2-3) and (2.1.2-h) are

concatenated as follows:

19



L lxX~t), X (), tt]

t-),t (2.1.2-6a)

S(t...j) H2.1.2-6b)
".ere is a 2n vector of knovn botmdaz7 ccnditions and the elements

of the 2nx2= matrices, A and B, are chosen such that eqn. (2.1.2-6b)

is satisfied. By defiing y(t) -(land pa_-itioning the interrva

[,t into N subintefas the Nt.BVI 0 1

repr-esented byeqn. (2.1.2-6) can be written as

= sj 3 t) tet(2.1.2-7a)

AY 0 +) By 1 a. o, ,..6 N-1 (2._.2-Tb)

%rhere

Y()tEt t I

0 : ([othezise

necessary that

yj-Y(t) - yj (t) j - 1,2, ... , N-1 (2.1.2-8)

Combining eqns. (2.1.2-7) and (2.1.2-8) results in the fo!!oving

NEPBVP :

" F(Y(t), t) t C [to, tf] (2.1.2-9a)

PY£ + = Y (2.1.2-9b)

Here Y(t), F(Y(t), t), YZ, Yr and y are 2-an vectors defined as:

20
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y() s (t)

y (t)
Y _ (t ) SY _ (t )

--yoo )  
2 (tl)

r jY N -' (tN )  YN- ( t) _jt °

'with P and Q- being 2.n/qX2n:1 zatrices of the 'o=

o . . .o-o o . ..

0 . . . . 0 L 0 -1 . . . .
I -....0

o .... o O!0 ..a-

Note that if we could find the constant vector Z which

minimizes

2
- + g - 1 (2.1.2-10)

subject to the dynamic constraint (2.1.2-9a), we woula bave an estizate

of the 'r--.cn states and para.eters. Because the conponents of
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II
(2.1.2-9a) are ucoupled, They may be integrated using a parallel

integration aigorithz by simultaneously shooting over each subinter-

val. Because each subinterval is much shorter than the interval

[,becomes less likely that the integration of the components

of (2.3.2-9a) will -iverge. As a result, convergence problems asso-

ciated with excessively large intermediate values of x(t) or A(t) may

be alleviated by adopting parallel shooting.

In summary then, the parallel algorithm to be implemented

would be:

Step 0: Record the noisy observations z(t),t [t Olt f, arbitrarily

choose the components of Y, and set X(to)=m where m is
ox x

0 0
the a oriori mean value vector of the augmented initial state

vector x(t ).

Step 2: Find A(t ) by solving the linear system

xo 0 (M x -x(
)0

0

where p is the a priori covariance matrix of x(to).

Step 2: Using R(t ), X(t ) as the first 2n components of YL and the

remaining components of '., integrate the co-ponents of

2 .I.2-3 ) over each subinterval by enoloying a parallel in-

tegration _ethod. Then record z(z), and x(t) t e [t, tf].

Step 3: Evaluate the error function

E= - PYt+ QY r -Y11

Step 4: If the error function is sufficiently small, the currently re-

corded values of x(t) are accepted as the "smoothed" estimates

we desire. Hence, we may terminate the algorithm. Otherwise,

22



using the recorded ncisyr measuremen-s, .crute a new value of

Y. so as to minimize E by employing a parallel -inimization

method. Now return to Steo 1.

Note that the oarallel algorithm above reduces to a parallel

version of ordinary shooting if only one subinterval is used.

Adative Mesh Selection

To implement the parallel algorithm discussed in the previous

section, the mesh points t o<tI <.O, <tN-t f must be chosen. Given that

N has been specified, the problem is to "optimally" select the mesh

points. The technique we shall propose for optimizing the mesh is

based upon using the local truncation error associated with any numeri-

cal method for integrating differential equations.* Upon convergence

of the procedure, the mesh points will be optimal in the sense of

minimizing the maximum local truncation error over each subinterval.

Formally, the method is as follows:

Step C: Let N be specified. Then partition the interval [toItf ] into

N subintervals of length A, Vi=!, 2, ... ,N.

I I

tt. tl
0 2 N-

Set Z=O and E (0 ) equal to some large positive real number.

Step 1: integrate the components of (2.1.2-9a) over each subinterval

and find

• _T..e local truncation error is defined to be the norm of the differ-
ence between the computed solution and the exact solution of an
initial-value 2roblem. Techniques for estimating this quantity based
on Taylor series approximations may be found in reference [221.

23
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emax max eL(e) j=O,,2 , 2.-max ~t _t._tj+l

-here e.(t) is the loca:. tr'ercation error.

2 et e=(e , , e max)T and compute

E (Y-l)  = IlelI 2

Step 3: !f I E(Z+I)-E(Z)I< C, the mesh points are accepted. Otherwise

redistribute the mesh using a parallel minimization method

so as to minimize E(x+ 1 ) as a function of

Aj, i =l1, 2, .... , N

suoject to

N
L A= tf-to  > 0.

J=l

Set + Z * 1 and go to Step 1.

Note that in Step 1 above the local truncation errors can

be computed simultaneously by separate arithmetic processors. By

:ombining the adaptive mesh selection algorithm and the parallel

shooting algorit.m described in the previous section, we will have a

rapid method for accurately obtaining a MAP estimate of the states

and parameters.

This is easily achieved by augmenting Y

with the unknown subinterval lengths A1,2, and mini izingV N-i

an error finction of the form

Z PV-1 + QV - ' 2 jjle! 12 (2.1.2-11)

subject to the constraints given :y
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N

Y~)=FrY(t), ) and = t.,-to

2.1.3 :r _ ct State and Parameter Estimation Algorith-_

Suppose for the system defined by eqn. (2.1-1), V(s) 0

t1 tE o t f l. That is, process noise is omitted from the state model.

Then the fixed interval smoothed estimate of the unknown state and

parameters may be found by searching for the vector .(t o ) which mini-
0

mizes the functional

J 1 t)_m~ 112o Pxo

0
subject to

:i(t)=f[ t ;] t C [to0 t f '2.-3

The most direct method for solving this problem would be to

.-. tally set R(t 0 ) to mx , integrate ean. (2.1.3-2) fo-:ard n -ime

over the inter-7a.i [t ,t,] and evaluate the performance index (2.L.3-1;.

By considering changes in the perfcrmance index due to changes in

2(to), one may use this information to decide if -his proceue shcud
0Y

be repeated. Specifically, if the change in J is sufficiently small,

then x(t ) is accepted. Otherwise, the value of x(tO ) should be

selected such that the performce index is minimized.

To speed computations, parallel integration methods may be

used to integrate eqn. (2.1.3-2), while the selection of the next

value of (t 0 ) may be made using a parallel inimization method.

An example illustrating this procedure is given in Section

5.2.7of this thesis. For now, however, let us devote our attention to
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develcg are. azri-_-s 'or :ptiza cotrol computatiors.

2.2 Cn-ro i loritbns

This section is concerned with the development of parallel

numerica2l methods for synthesizirng controls for nonlinear dyn.amical

sysezems. Specifically, an optimal control algorithm is preserted

i- Section 2.2.2.1 which incorporates parallel shooting and adaptive

mesh selection to solve the optimal control problem. This method is

extended to accommodate problems in which the control is constrained

in Section 2.2.2.2. In Section 2.2.2.3, a parallel algorithm is

discussed -which may be used to solve free terminal time problem. i.e.,

problems in which the terminal time is unspecified and as such must be

optimized. Finally in Section 2.2.2.4, a suboptimal (or direct)

zontrol procedure is given to design feedback control laws for non-

linear ynamica systems.

Let us proceed by formally stating the optimal control

problem.

2.2.1 Problem Statement

The physical process to be controlled is assuned to be a

.n-inuous nonlinear dymnancal system which can be represented by

x~)=fx=)ut,) tr:[t 0 t ] f(\2.2.1-1)

where

x(t) e 1n is the state of the system,

u(t) c Rr is the control and r < n.

The terminal time, tf, may be either prescribed or be an unspecified

pr-oble-parameter. it is assumed that the initial state vector x(t

and M components, 0 < M < n, of the final state vector, x(t ) are known,

26
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-e.', X~t ) x- and "r M > C_ . ,, x. ,, < i<M.
c - - -

The optimal :ontrol problem is that of findir.g a control

.ec.r in some e issible s, 'le s, ," , which iinmizes a merf r.ance

c" f the fc-- :

J = t + f ' ) " (2.2 1-2)
t 0

subject to the diferential constraints (2.2.1-1) and the above

boundary conditions. Observe that, if M components of the final state

"rector are k-novn, then these cuantities need not be incorporated

the penalty function, (x(tj)), showr in ean. (2.2.1-2). The solu- ion,

= u*(t), of the optimal control problem is called the c ,ima

control and is assumed to exist and to be =- " c

In practice, it is rather diffcult to find the optimal

control since to do so it is necessari to solve a ._-hg! n ne

btc n: boundary value prcblem (NIB'PVP) . Since -he solution c

:T:?'F3V? I s is often verY time consuning, the role of nara'-.sm mi,.

be to reduce the conputaticnal burden associated sth solv'. NBV7s.

This idea is pursued further in ,re nex- secti:n.

22.2 C ta:L- -"

For a control signal to be optimal, Pontryagin's Minimun

Principle [233 indicates that the control must minimize the Hamiltoniazn

defined as '2.2.2-1)
~m

Ti(x lt) X(t) u(t)) L(x ,t , u(t ,t + A t) f(x~t) t ,S,

where X(t) E Zn is the costate or adoint vector. Let u*(t) be a-n

element of U and let x*(t) be the solution cf eqn. (2.2.1-1) which is

27
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dependent on x*(t ) = x* and u() = I*(t) :n order for u*(t) :o be
0 0

the olotimal control the follo-ng necessary conditions for optimality

must be satisfied.

= (x*(t), i*(-), u*(t)) (2.2.2-2)

*(t) - ;x-(x*(t), X(t), u*(t)) (2.2.2-3)

X = = 1, 2, ... , M (2.2.2-4)

(t.) = C (x*(t i = 1 + ., M + 2, . . (

H~x*(t), X*(t), u*(t)) < H(x*,-,, X*t,;t) 2226

t S Et o tf and 1 u(t) e U (2.2.2-7)

These necessary conditions may be used to solve many problems of

Interest in optima-I cortrol thecry. I. partictl ar, our efforts w12.

focus on developing parallel algorithms to solve specified terminal

time problems, bounded control problems and free terminal time problems.

2.2.2.1 Soeified Terminal Time AIgorithm

Let us assume that the condition

;H
(x(t), X(), u(t)) 0 (2.2.2.-1)

:an be explicitly solved for u(t), the control is not subject to a

magni-ude constraint and the terminal time is specified.

Under these conditions eqn. (2.2.2-6) requires that

;H (x(t) X*(t) u*(t)) = o u*(t) = h(x*(t), *(t)
(2.2.2.1-2)

Nov consider the system of equations

u(t)= h(x(t), X't), (2.2.2.1-3)

28



"' (x~t ,\( ) u : -(:,: -,

,, LH (x(t, A(), u)) = g,×, ;, t) u(2.2.-),

3x

(2.2.2.1-5)

wizh cundarv -onditions

x~t 0', x x i(t, 1 , 2, m

Vt )i(tf = (x(to) i = M-I, M+2, ..., no X.

Let 2 represent that set of vectors for which the syster.

(2.2.2-2) and (2.2.2-3), with u(t) given by (2.2.2-6), has a unique

solution W - C[t , t ]. Then for each A_ £ §, there corresponds a

unicue non-negative value for the scalar f unction:

M 2(x = - + Z (x ,x( f)2

i=1 2 f i=M+l 2f

(2.2.2.1-6)

The nzuction E will be referred to as an error functior.

Notice that if one coujld find A* E P such that the forard
0

integration of eqrs. (2.2.2.:-.) and (2.2.2.1-5) 1--ads to E E 0, then

-:e res~itant solution of eQns. (2.2.2.1-4, and - suec tc

e . -3) would satlsf'- the necessary ccn iitions (2.2.2-2),

(2.2.2-3), (2.2.2-4), (2.2.2-5) and (2.2.2.1-2). The associated

control vector, u(t), as specified by eon. (2.2.2.1-3) would, there-

fore, be taken as the optimal control for the original optimal control

problem. Since x(t ) is assumed to be known, the problen of finding

X* and hence of solving the optimal control problem is equivalent to0

the nroblem of minimizing the error function given by eqn. (2.2.2.i-6),
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Since -he initial state and terminal time are specified, this

may be accomplished by iteratively updating the initial costate until

the error '.n=tion <2.2.2.!-6) is minimized. It may be, however, for

any given initial costate the solution of eqns. (2.2.2.1-h) and

(2.2.2.1-5) together ,ith eqn. (2.2.2.1-3) may become excessive in

magnitude for t < t,. :n order to cope -ith such situations, a tech-

nique used by :saacs [24] or the method of parallel shooting can be

adopted.

Isaacs Procedure:

If X 0 e2, then there will, in general, exist some t'<t f

to the left of which the solution of eqns. (2.2.2.1-h) and

(2.2.2.1-5) together with eqn. (2.2.2.1-3) remains computable.

Consider then the optimal control problem which is idertical to

the original problem except that tf is replaced by t'. Using '

as the "priming guess" at the optimal initial costate for this

modified optimal control problem, a solution can be obtained an5

the resulting initial costate, X*, is taken as a candidate for
0

membership in 0. if XoQ, tf may be replaced by its original value
o tf

and the solution to the original optimal contro problem can be

pusue d.

If, however, loe, then there will, in general, exist t",
0

t'<t"<tf, such that the solution of eqns. (2.2.2.1-h) and (2.2.2.1-5)

together with eqn. (2.2.2.1-3) remains computable to the left

of t". A new optimal control problem in terms of t" is then posed

and the process is repeated.
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Experience with :saacs' method indicates that this method

is particularly well suited only for problems with relatively short

mission tines. This is a result of the fact that, if the mission

time is too long, the sensitivity of the solution to small changes in

-he initial costate becomes too excessive for the Isaacs method to

overcome. For short, mission times, however, convergence to an

element, A* 0 E2, is quite rapid. Convergence may be accelerated

still further if poarallelism is introduced when integrating the state

and costate equations forward in time. Also, the selection of the

next value of the initial costate can be made using a parallel minimi-

zation procedure.

?arallel Shooting Solution cf Optimal Control ?roblems

in some cases, the problem under consideration ma be sen-

sitive to small perturbations in the initial costate and, as a result,

convergence to an optimal solution may be slow (if convergence occurs

at all). in this situation, parallel shooting has proven to be very

effective in alleviating such problems. By invoking the principle of

duality, the parallel shooting procedure described in Section 2.1.2

to solve optimal estimation problems may be employed to solve optimal

control problems also.

To illustrate the paraLlel shooting procedure for optimal

control problems, eqns. (2.2.2.1-4) and (2.2.2.1-5) are concatenated:

~~~~~) -~) uCt}J t)~ ~ ) ~tut,

(2.2.2.1-7a)
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. . ..X(t. 4"_ ....A ---E-+ B [-] I
Vt X~t) X~t(2.2.2.1-Tb)

where a is a 2n vector of known boundary conditions and the elements

of the 2nx2n matrices, A and B, are chosen such that eqn. (2.2.2.1-T)

is satisfied. By defining y(t) and partitioning the interval

into N subintervals t < I < .... < tN= tfs the NTPBVP

represented by eqn. (2.2.2.1-7) can be written as

j 6 1(yj, t) t[ti, tz+l ] (2.2.2.1-8a)

.Ay(to) + ByN_(tf) = a j = 0, 1, ... , N-I (2.2.2.1-8b)

where

where ~ y()=f t otherwiset t'tj I

Since y(t) is required to be continuous at the partition points, it is

necessary that

yj_ = y(tj) j = 1,2, ..., N-. (2.2.2.1-1)

Combining eqns. (2.2.2.1-8) and (2.2.2.1-9) results in the following

1TBVP:

t(t) = F(Y(t), t) t E [to , t f (2.2.2.1-10a)

PYI + QYr = Y (2.2.2.1-10b)

Here Y(t), F(Y(t), t), Yt, Y. and y are 2nN vectors defined as:
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yo(t) s~jt)

y 1 (t) s 1 (t)

y( )= s (t)), )

Y0 (t 0 ) 0 (t )

yl (tI) y (t 2) -X(to)
-- Y Lr x( .n )

0

YN-I('S-1) LYNi(tf)

with P and Q being 2nNX2nN matrices of the form

-- 0o....0 o-C o....B

1 0 . ..0 
-I 0 . .

0 . . 0
p= Q= 0

0
0. 1

0 . . . 0 0 • O-

In view of this formulation, the parallel variation of

extremals algorithm considers the selection of Y. to minimize

: A k + Q - Y H2  (2.2.2.1-11)

subject to the dynamic constraint (2.2.2.1-10a). This defines a new

optimization problem involving constant rather than time varying
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unknowns. Observe that finding the iec-or Y such that E 0 is

equivalent to satisfying the necessary conditions for optimality.

Also, it is important to note that the components of eqn (2.2.2.1-10a)

are uncoupled and hence may be integrated by simultaneously shooting

over each subinterval.

In summary then, the procedure to be followed is:

Step 1: Arbitrarily choose the components of Yt.

Step 2: Integrate the components of eqn. (2.2.2.1-10a) simultaneously

starting at Y using a parallel integration scheme.

Step 3: Eval-,%te the error function E A 11 Pyt + QYr - y J11
Step 4: If the error function is sufficiently small, the Y z is ac-

cepted. Gthe-ise, update Y such that E is mininized

by using a parallel minimization procedure.

Note that the parallel algorithm above reduces to a parallel

version of ordinary shooting if only one subinterval is used. In this

case, however, the algorithm may still be considered a parallel method

since the differential equations may be integrated using a parallel

integration scheme. Also, the partition points required by this algo-

ritlhm may be optimally selected via the adaptive mesh selection algo-

rithm, discussed in Section 2.1.2.

2.2.2.2 Bounded Control Algorithm

The techniques described in the previous section can be

extended to problems with control constraints of the form:

U.() < B V t E [to, t4] i = 1, 2, ... , r (2.2.2.2-1)

"he method for handling constraints of this type is based on the fact
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that for each t E , t f, u*(t) is either on its boundary or

-x*(t), X*(t), u*(t)) = 0. Consequently, in the evaluation of the

error functions described in Section 2.2.2.1, u(t) is replaced by

h (x(t), X(t)) for hi (x(t), X(t)) <Bi i = 1, 2, ... ,r

i t B sgn (h ix(t), X(t)) othicriise (2.2.2.2-2)

The approach cun also be extende l to some cases where

2--(x(t), X~t) u(t)) - 0 can be explicitly solved for the control.*

For example, consider

H(x(t), x(t), u(t)) = F I(X(t), x(t))+F 2(x(t), X(t))u(t)

(2.2.2.2-3)

where ult) < B i , i = 1, 2, ... , r V telt, t I
0 f

In this case, the extremization required by eqn. (2.2.2-6) is carried

out directly. Thus, eqn. (2.2.2.1-3) is replaced by

u(t) = - B sgn (F2 (x(t), X(t))) (2.2.2.2-4)

Note that this technique requires that

F2(x(t) , X(t)) # 0 ; te[t o, t f

since eqn. (2.2.2.2-4) would be undefir -. in this case. Note that if

this occurs on the optimal trajectory, the problem is called a

singular control problem.

2.2.2.3 Free Terminal Time Algorithm

To accommodate problems when tf is free, we utilize the

necessary condition

H(x*(t), X*(t), u*(t)) = 0 U t [tt t] (2.2.2.3-1)

• Note that the bang-bang control problems fall into this category.
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In -particular, since the Hamiltonian must be zero at t =to, the

following constraint must be satisfied.

H(x(t0 ),-X(t 0 ), U(t0)) - 0 (2.2.2.3-2)

Incorporating the constraint given by eqn. (2.2.2.1-3) into eqn.

(2.2.2.3-2), results in

H(x(t0 ), X(t ), h(x(t0 ), X(to)) = 0 (2.2.2.3-3)

For computational purposes, we restrict our consideration to those

cases where eqn. (2.2.2.3-3) can be explicitly solved for one of the

components of the initial costate vector. For convenience, assume

this to be the first component of X(t ).t From eqn. (2.2.2.3-3), it can

be seen that X (t ) is a unique funetion of x(t ) and the remaining con-

ponent of the initial costate vector.

Let this value of X(to be defined by:

XI(t = (x(t0 ), V(t ) (2.2.2.3-4)

where the (n-l)-vector X(t ) is defined as

X(t )  ( 2 (to) 0 3(to), ..,n(to0)) T

In view of eqn. (2.2.2.3-4) and the fact that t is unspecified, a

suitable error function which must be minimized by selecting tf and

. (t 0 ) would be

E A M M
(x (tf)-ai) + (Xi(t) - (X(tf))

i-1 i=M+l i

(2.2.2.3-5)

Clearly, this error function can be viewed as a function of the

If this is not the case, we simply reorder the components of the
initial costate vector.
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following n-vector:

- A T
(f$ o(t 0)) A 2 (o)S ( ,n( ) ... n (t 0))

Observe that if one could find (tf, X(t 0 )) c n such that E 0

subject to the constraints of eqn. (2.2.2.1-3), (2.2.2.1-4), (2.2.2.1-5),

(2.2.2.1-2) and (2.2.2.3-1), then the corresponding control

vector as given by eqn. (2.2.2.1-3) would be the optimal control for

the original optimal control problem. Notice that this is equivalent

to minimizing the error function (2-2.2.3-5) subject to the constraints

of eqns. (2.2.2.1-3), (2.2.2.1-4), (2.2.2.1-5) and (2.2.2.3-4).

In summary, free terminal time problems may be solved using

the following parallel algorithm:

Step 1: Arbitrarily select the components of the n-vector (tf t )).

Step 2: Using x(to ) and X(to), evaluate X (t ) using eqn. (2.2.2.3-4).

Step 3: Compute u(t ) from eqn. (2,2.2.1-3) and use a parallel inte-

gration method to integrate the components of eqns. (2.2.2.1-4)

and (2.2.2.1-5) starting with x(t 0 ), i(to ) and X(t o) ovr

the interval [to,tf ] .

Step 4. At time tf, evaluate the error function given by eqn.

(2.22.3-5).

Step 5: If the error function is sufficiently small, stop, otherwise

use a parallel minimization algorithm to update (tf, V(to))

such that eqn. (2.2.2.3-5) is minimized.

2.2.3 Suboptimal Control Algorithm

In the previous section, various parallel methods were

discussed which could be used to design optimal control systems.

Although a controller designed using these methods is optimal in the
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sense of satisfying the necessary conditions for optimality, the

resultant control system is open loop and, as such, may be very sen-

sitive to environmental disturbances. Thus, it seems appropriate to

consider methods for designing a closed loop control system to over-

come such problems. With this in mind, the fcllowing parallel method

is proposed.

Suppose the controller is constrained to be of the form

u(t) = h[x(t),t] V t C[t 0 t f ]  (2.2.3-1)

where h~x(t),t] is assumed to be continuous and specified by the con-

trol system designer up to a set of constants. For example, to design

a linear feedback controller one might select

u(t) = h[x(t),t] = kx(t) (2.2.3-2)

'where k is a gain matrix whose elements must be determined such that

the closed loop system is stable. Once the structure of the controller

has been specified, the problem is simply to find a finite number of

constants which minimize:
tf

J = O(x(tf),tf, + ftfL(x(t),hx(t),t],t)dt (2.2.3-3)

0

subject to the dynamic constraint given by

x(t) = f[x(t),h~x(t),t],t]. (2.2.3-4)

If we let K - (k, k 2 ,. . . . . km) be the vector of unknown

constants to be optimized, then the optimal elements of K may be

found as follows:

Step 0: Let u(t) = h(x(t),t] be specified and select K(0 ) such that

the forward integration of eqn. (2.2.3-4) is stable

over the interval [t t f]. Set C =0.
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Step 1: Given K(0 1 and the known initial state x(t 0 ), integrate

eqn. (2.2.3-4) forward in time over the interval [t0 ,t f

using a parallel integration scheme.

Step 2: Evaluate the performance index:

t4-
J = (x(tf),tf) + t.L(x(t),u(t),t)dt

0

Step 3: If jiJ(4 + ) - J. )I<C, then the current value of K is accepted

and the procedure is terminated. Otherwise, use a parallel

minimization procedure to update K such that J is minimized.

Then set Z - Z+1 and return to Step 1.

Clearly, the simplicity of this method and the fact that the

controller utilizes feedback makes this method very attractive. Also,

by incorporating parallel algorithms in Steps 1 and 3 above, the com-

putation time required for convergence can be significantly reduced.

Finally, it should be noted that the direct gain optimization proce-

dure above is the dual of the direct state and parameter estimation

algorithm discussed in Section 2.1.3.

2.2 Adantive Control and Estimation Algorithms

For many physical processes, variations in the environment

necessitate major modifications in the control strategy to meet oper-

ating requirements. In such cases, an adaptive control system might

be employed to provide near optimal control in spite of environmental

disturbances. In this section, an explicit adaptive control scheme

is described which employs parallel algorithms to generate a control

signal in response to parameter changes tracked by an adaptive para-

meter identifier. Since, in many cases, the state variables required
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by the explicit adaptive control scheme are not accessible, the

unknown states of the system must be estimated simultaneously with

the parameters.

Due to the fact that the parameters may be rapidly varying,

the role of parallelism would be to reduce the computation time needed

to update the parameter vzlues, state estimates and subsequently the

zontrol law. In particular, the state and parameters may be updated

by using the parallel state and parameter estimation algorithms dis-

cussed in Section 2.1 on a "vindcw" of measurement data and then the

parallel control algorithms of Section 2.2 could be employed to update

the control based upon the latest estimates of the states and para-

meters.

To this effect, this section will be concerned with devel-

oping parallel algorithms for rapidly performing nonlinear estimation

and control in an adaptive fashion. Note that the major goal is to

utilize these parallel algorithms in an explicit adaptive controller

of the type shown in Figure 2.1. Hopefully, the use of parallelism

will permit the on-line implementation of such a system. To this end,

let us proceed by formally stating the adaptive control problem.

2.3.1 Problem Statement

Consider a stochastic nonlinear dynamical system and mea-

surement model represented by

x(t) = f[x(t),u(t),t] + G[Y,(t),t]v(t) (2.3.1-1)

z(t) = h[(t),t] + v(t) (2.3.1-2)

where x(t). is an augmented state vector which contains any unknown

parameters, u(t) is a control, and z(t) is a measurement vector.

40



w

5 0)

0Y CD:

u - 0)

-j-
-It

wwJ-w

C) Z

41



The noise processes w(t) and r: ae mu-a'. ±zifependent zero-mearn

white Gaussian noise processes ".*ith correstor.2ng :zvariance matrices

= Q(:))t-"( <,, s _

and

VVt T ,t'J P )5 ts < ,s <

Also, it is assumed that the initial state, x-,, is Gaussian and

unco -reIated -- th v(t) ad v(t). rurthexmore, consider the perform-

ance criterion

J = L{(¢x(t ),t] +ftl[x(t),u(t),t]dt} (2.3.1-3)
0

where E "} is an expectation operator. The cbjective is to determine

the control, u(t), which minimizes eqn. (2.3.1-3) subject tc the sto-

chastic dynanic constraints given by (2.3.1-I) and (2.3.1-2).

The approach -we shall take in sol-ing this stochastic control

mroblem is similar to that of larsen and Tse - whc proccsed separat-

ing this problem into a deterministic control oroblem and a nonlinear

estimation problem. Basically, the approach is as follows:

Suppose for a giren system, the staze and a nominal set of

par-ameters which define the systems equaticns of motion are kno,,n at

the initial time. Because the structure of the estimator and co-troller

shown in Figure 2.1 is assumed to be known, we may set the appropriate

parameters in the adaptive estimator and controller to their nominal

vmlues before the process to be controlled is started. When this

initialization is complete, the process is started and the control

is computed on-line and applied to the plant as the process e'volves

for all t > t
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':o accoun-t for uncertairties in the plant parameters and

disturbances, it may be necessary to adapt the control during the

mission time interva l.,t=]. This may be accomplished on-line by

updating the control by emplsying the parallel control algorithms,

discussed in Section 2.2 at the adaptation times t. where

t i C[to~ 0 i = ,1 2,

However, to use the algorithms of Section 2.2.% an estimate of the

process parameter-'. and unknown state variables must be available at

the time of adaptation. These estimates can be acquired by recording

the noisy observations z(t) over the interval [t. ,ti+1] on-line and

using the nonlinear SAP estimation algorithms discussed in Section 2.1.

The idea outlined above forms the basis for the explicit

adaptive control scheme which is ilustrated by the timing chart shown

in Figure 2.2. With this background, we can proceed to the next

section, in "which the details of the adaptive control scheme are

presented.

2.3.2 Direct Exlicit Adaptive Control

_n this section, an explicit adaptive control scheme is pre-

sented which utilizes the direct estimation and control algorithms

discussed in Sections 2.1.3 end 2.2.3 respectively. In particular,

consider the state and measurements models given by eqns. (2.3.1-1)

and (2.3.1-2) with w(t) = 0 V t E[t , h. Tat is, no process noise

is present. it is assumed that the nominal initial state of this

process is knowr and a nominal set of parameters which define the

dynamics represented in eqn. (2.3.1-1) are given. Also. let us assume

that the mission time , is finite with the partition
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t0 1< 2 *... <-*n_,<t -P

and that the control law to be optimized is linear in the

state as follows:

u(t) = Kx(t)

To implement the explicit adaptive control scheme, a sequence of

control and estimation problems must be solved. In particular, the

following must be solved on-line:

Control Problem:

min Ji ff Lx(t),Kx(t),t]dt i = 0, 1, 2, .. (2.3.2-1)
K t.

subject to x(t) = ffx(t),Kx(t),t].

SAP Estimation Problem:

ti+
Min~~j i+l Att12

x(t ) J- H =z(t) - h[ (t),t]f dt i - ,1,2, N
it R(t)~(2.3.2-2'

subject to

i(t) = f t, t,]

Note that 2(t) is an augmented state vector which contains

the unknown parameters to allow the simu.taneous estimation of the

states and parameters.

In view of the above problem formulation, the following paral-

lel procedure might be employed to adapt the control in response to

parameter changes detected on-line.

Explicit Adative Control Algorithm - Direct Method

Step 0: Initialize the estimator and controller with a nominal set of

parameters and control gains. Start the zrocess and apply the
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control which is computed based upon the nominal quantities

as the process evolves for t> t o . Set i = 0.

Step 1: Throughout the interval te[ti,t i+l record the noisy measure-

ments z(t) and the control u(t). At time ti+1 , use the

recorded values to update the estimates of x(t) by minimizing

eqn. (2.3.2--2) using the direct SAP estimation algorithm

discussed in Section 2.1.3.

Step 2: Reinitialize the controller with the updated estimates of

2(ti+1 ) and reoptimize the control gains over the interval

[t i+1tfI by minimizing eqn. (2.3.2-1) using the direct gain

optimization procedure presented in Section 2.2.3.

Step 3: If ti+l<tf, apply the reoptimized control to the process for

t > t i+1 , set i- i+l and go to Step 1. Otherwise, stop since

the mission time has been exhausted.

The optimality of the control histories generated according

to the above procedure primarily depends upon two items:

" The reliability of the state and parameter estimates obtained at

the adaptation times.

" The ability of the parallel algorithms to reduce the performance

criteria given by eqns. (2.3.2-1) and (2.3.2-2).

The stability of this algorithm depends mainly on how far

the actual process parameters are from their nominal values when the

process is started, the degree of parameter variation during the

mission time and the frequency of adaptation.

Although the explicit adaptive control algorithm previously

described employed the direct estimation and control procedures, it
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could J~ust as easily employ the indirect methods discussed in

Sections 2.1 and 2.2. In this case, these methods would be used to

solve the NTPBVP's associated with the optimal control and estima-

tion problems. Note that if parallel shooting is used, the adapta-

tion times should correspond with the mesh points required by the

parallel shooting method. It should be emphasized that no matter

which parallel algorithm (direct or indirect) is employed to perform

the estimation and control operations, the role of parallelism is to

reduce the computation time enough to allow the on-line implementation

of the explicit adaptive control scheme.
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CHAPTER THREE

PAPALL-L ALGORITHM4S FOR REDUCING COMP~UTATION TIME

To reduce the amount of computation time associated with

the parallel algorithms described in Chapter Two, one may employ

parallel minimization algorithms and parallel methods for integrating

ordinary differential equations (odels). Specifically, a reduction in

computation time is possible because:

e. Parallel minimization algorithms generally require fewer iterations

to minimize a function compared with serial methods.

*Parallel integration procedures allow many of the arithmetic oper-

ations associated with integrating ode's to be performed simulta-

neously on separate processors.

In Section 3.1, a survey of parallel minimization procedures

is tresented. Also in this section, a class of parallel rank-two

quasi-Newton methods are developed which is one of the major contribu-

tions of this thesis.

In Section 3.2, parallel integration methods are surveyed

and one of the methods is extended so that the integration step size

is automatica~lly adjusted to maintain a desired level of accuracy

while keeping the paral.lel structure of the algorithm. The develop-

ment of such a parallel variable step size integration scheme is a

significant contribution in its own right.

Finally, the advantages of utilizing the new parallel methods

developed in this chapter are illustrated by comparing these methods

48



With regard to the monotone sequence, it has been observed

that if this sequence is selected such that it approaches zero too rapid-

ly, then the total number of flunction evaluations required to locate the

minimum becomes needlessly large and as a result, the amount of time re-

quired for convergence increases significantly. On the other hand, if

the monotone sequence approaches zero too slowly, these relatively large

values may cause the Chazan-Miranker algorithm to become unstable.

Experience with the Chazan-Miranker method indicates that

the performance of this method is highly dependent on the choice of

algorithm parameters which is not very desirable.

Parallel Variable Metric Algorithm

Straeter has developed a gradient-based parallel variable metric

(FVM) algorithm which can be implemented on modern parallel computers

1 26. One of the properties of the PVM algorithm is that if the func-

tion being minimized is a quadratic in n variables, then the iterates

will converge to the location of the minim- in one iteration provided

a levels of parallelism are used. Also, Straeter has shown that for

strictly convex functions on a finite dimensional space, the iterates

converge to the minimum provided the metrics are uniformly bounded.

Straeter's PVM algorithm is a parallel version of Broyden's

symmetric rank-one procedure [29], which requires at most n iterations

to find the minimum of a quadratic function in n variables. Note that

when minimizing a quadratic, the PVM algorithm is n times faster than

the symmetric rank-one procedure. Although this is highly desirable

and the major reason for developing a parallel minimization procedure,

Straeter's method suffers from the same problems associated with

Broyden's symmetric rank-one procedure.
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with some existing minimization and integration algorithms.

3.1 Parallel Minimization Algorithms

In this section, methods for unconstrained minimization

are discussedwhich are suitable for modern parallel computers. At the

present time, only three algorithms have been reported which possess

this feature. These methods include the nongradient algorithm of

Chazan and Miranker [25], the parallel variable metric (PVM) algorithm

reported by Straeter [26], and the parallel Jacobson-Oksman (PJO)

procedure developed by Straeter and Markos [27].

These parallel procedures are described in some detail in

Section 3.1.1 to motivate the discussion of a class of parallel uasi-

Newton (PQN) methods which is developed in Section 3.1.2. In Section

3.1.3, the PQN method is tested by minimizing a standard set of test

functions and the performance of this new method is demonstrated by

comparing it with some popular minimization algorithms currently in

use.

3.1.1 A Survey of Parallel Algorithms for Unconstrained Minimization

In this section, three parallel algorithms for unconstrained

minimization are discussed to provide an indication of the state-of-

the-art in this area of research. The methods to be considered include

the nongradient algorithm of Chazan and Miranker [25] and the gradient-

dependent algorithms developed by Straeter [26], [27]. The mathematical

details of each parallel algorithm may be found in the Appendix, while a

brief review of their properties and shortcomings is given in the re-

mainder of this section.

Chazan-Miranker Algorithm

Chazan and Miranker have developed a parallel nongradient
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algorithm for unconstrained minimization which is suitable for execu-

tion on an array of parallel processors L25]. 7t can be shown that

this algorithm will converge for strictly convex, twice continuously

differentiable functions. Moreover, if the function to be minimized

is a quadratic in n variables, the procedure will require at most n2

one-dimensional minimizations to converge. Since these one-dimensional

minimizations can be performed simultaneously using n levels of

parallelism, at most n iterations would be needed. Note that this is

significantly faster than the serial Zangwill-Powell nongradient
2

method [28], which requires approximately n sequential one-dimensional

minimizations to find the minimum of a quadratic in n variables. This

implies that the speed-up due to parallelism increases linearly with

the number of processors when minimizing a quadratic by the Chazan-

Miranker algorithm.

The Chazan-Miranker algoritnm is based on the properties

of conjugate directions. In fact, it can be shown that the search

direction vectors generated by this algorithm form a set of conju-

gate directions. By searching along these directions, convergence

is guaranteed (at least when the function being minimized is convex).

The rate of convergence, however, depends primarily on the accuracy

of each line search and a monotone decreasing sequence tending to

zero.

With regard to the line search, provisions must be made

for allowing both positive and negative values of the linear search

parameter because the search directions generated are not necessarily

descent directions. Note that this complicates the line search algo-

rithm to some degree.
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The most noteable problem with all rank-one algorithms (serial

or parallel) is that the update rule used to construct the inverse

Hessian is numerically unstable. That is, the update is undefined

when certain vectors are orthogonal. Unfortunately, this occurs quite

often when applying Straeter's method to nonquadratic functions and

generally results in a nonpositive definite update. Also, Straeter's

PVM algorithm requires accurate gradient information for the method

to converge. Since the gradient of highly complex functions is diffi-

cult at best to compute numerically, this problem may seriously limit

the application of Straeter's method.

Parallel Jacobson-Oksman Procedure

Another gradient-dependent method for unconstrained mini-

mization which exploits the parallel computing capabilities of modern

parallel computers is the parallel Jacobson-Oksman (PJO) procedure re-

ported by Straeter and Markos [27]. This algorithm is a modification

of the sequential Jacobson-Oksman (SJO) procedure r30] which assumes

that the function being minimized is homogeneous. Because the class

of homogeneous functions contains the quadratics as a subclass, homo-

geneous functions are therefore richer than the quadratics. Moreover,

functions which have a singular Hessian at the minimum can be more

accurately approximated by a homogeneous model.

At each iteration of the PJO algorithm, a linear system of

n+2 equations must be solved. Straeter has shown that if the solution

of this linear system exists, and the function being minimized is homo-

geneous in n variables, then the PJO algorithm will converge to the

minimum in one iteration provided n+2 levels of parallelism are used.
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By comparison, the SJO procedure requires n+2 iterations to minimize

a homogeneous function in n variables. Straeter also shows that the

PJC algorithm will converge to the location of the minimum of any

function with a continuous, uniformly positive definite matrix of

second partial derivatives.

Although the PJO algorithm is relatively efficient, if has

been reported in [27] that in practice the PJO algorithm may not per-

form better than the SJO algorithm. Straeter also indicates that the

major problem associated with the PJO algorithm is its limited robust-

ness. The term robustness used by Straeter refers to the relative

insensitivity of the PJO algorithm to the magnitude of the basis vec-

tors needed by the PJO algorithm. In fact, if the magnitude of the

basis vectors is too small, the linear system which must be solved at

each iteration may not have full rank or may be very close to being

singular. The problems cited above are not very encouraging and seen

to indicate that much care must be taken when using the PJO algorithm.

In view of the problems associated with the parallel minimi-

zation algorithms discussed in this survey, it appears that there exists

a need to develop a more robust and dependable method for minimizing a

function of several variables. In the n!xt section, a class of parallel

rank-two quasi-Newton methods are presented which are shown to be more

robust and dependable than currently existing procedures.

3.1.2 A Class of Parallel Double-Rank Quasi-Newton Methods

In the previous section, a survey of parallel minimization

methods was presented and the shortcomings of these methods were cited.

Since the time of their development, new results have appeared in the

53



literature which may be amenable to parallel computation. In particu-

lar, Broyden [29] has introduced a family of variable metric formulae

which are useful for function minimization and have the desirable prop-

erty of quadratic termination provided accurate line searches are used.

Imbedded in Broyden's class of quasi-Newton methods is the Davidon-

Fletcher-Powell (DFP) method [31], the Broyden-Fletcher-Shanno (BFS)

method C32] and the symmetric rank-one (SRI) method [29].

Analytical and empirical studies by Dixon [33] and [34], and

Himmelblau E35] indicate that the BFS rule is generally preferable to

the DFP and SR1 updates because of its reliability of convergence for

a wide class of problems. In view of these results, the remainder of

this section is concerned with restructuring Broyden's class of quasi-

Newton methods such that the modified procedure posses a high degree

of parallelism. A particularly interesting outcome of this work is a

class of parallel double-rank quasi-Newton methods (such as a Parallel

Davidon-Fletcher-Powell (PDFP) method and Parallel Broyden-Fletcher-

Shanno (PBFS) method, as well as a parallel version of the symmetric

rank-one method. It is felt that this new class of parallel quasi-

Newton methods potentially can be far superior to the parallel methods

surveyed in Section 3.1.1.

3.1.2.1 The Parallel Quasi-Newton Method

In this section, a gradient-dependent parallel algorithm

which employs a rank-two correction to approximate the inverse Hessian

matrix associated with Newton's method is developed. One of the de-

sirable properties of this new parallel minimization algorithm is that

if the function being minimized is a quadratic in n variables, then

54



the inverse Hessian can be constructed exactly in one iteration, pro-

vided n+l levels of parallelism are used. This property of the parallel

quasi-Newton (PQN) method willbe proven later in this chapter. At

this time, however, it seems appropriate to formal2.y present the method.

?arallel Quasi-Neton Method

Gie (0 ) H(0 )
Given x (), H and E = 2 2 ... n) = c 'n c > O,

let = 0, m = 2, and perform the following steps:

Step 1:

a. Let xi - x( 9) + C . Then simultaneously compute:

g(x ( ) and gj - g(xj)

1 - , 2, ..., n

b. Simultaneously compute the gradient differences:

y= gj - g(x ) ) J = 1, 2, ..., n

Step 2:

Let dI = 01 and solve the followving linear system for cm, cm,

,m-:



T T T d T
Y1 d 1  d ......... Ym-1 dc -yd

F.2 m 1

T T T T
Y 1 d2 Y2 d2 ..... Ym-1 d2 Cm2  -Ym d2

i =

T Td T
Y3 d- 2 dn-1 Y din1  Cm - -Y dn-1

Then construct the direction vector:

M-i

d + C Odm m 7, mJ

J=1

If m < n, set m - m+l and repeat this step. Otherwise, go to Step 3.

Step 3:

a. Compute "n+l" gradients of f(x) at "n+l" distinct points in

parallel:

g(x and gj = g(x + d ) J = 1, 2, ... , n

b. Compute the graaient difference in parallel:

yj = g - g(x ) j = 1, 2, .... n

Step 4:

(z.+1) (.
Update H using "n" rank-two corrections. Let H = 0

e [0, 1] and compute:

T (i+i) ( +)

=1 H (29+1) d i -1 .1- (j 1  )TjH J-1 + T £T (+1)dyj :r H j 1  y

6T J 1, 2,
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where

S (.+i) Y j)] r ---- Y(Hj_1  
d ] Y yJJ- YJ_

Then setH =
n

Step 5:

Perform a line search in the direction s as follows:

rain f(x as)

where

s -H g(x

and set x (Z+ I ) =x (Z ) + a s.

If lf(x ) - f(x()) < c, stop; otherwise, set Z Z+l, set

a = d V J= 1, 2, ... , n and go to Step 2.

It should be pointed out that a fundamental need of the PQN

method is the solvability of the linear system of equations shown in

Step 2 of the algorithm. The issue of solvrability will be analyzed in

the next section assuming the function being minimized is quadratic.

However, a rank test should be incorporated into the linear equation

solver to test for solvability at each step of the iteration.

3.1.2.2 Properties and Convergence of the PQN Method

In this section, an analysis of the PQN method will be con-

ducted to demonstrate the properties of this algorithm and show that

the algorithm will converge in only one iteration to the minimum of a

quadratic function. If the reader is not particularly interested in

the mathematical details of the convergence proof presented in this

section, but is more interested in the performance of the PQN algo-

rithm, he should move on to Section 3.1.3 since the rest of this report
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may be read without an understanding of the following analysis.

To begin our study of the PQN method, the following defini-

tions are in order:

Definition: A function f: Rn 
+ R is said to be quadratic if f is of

the form:

f(x) = xT A x + bT x c

where the A matrix- is positive definite symmetric (pds).

Definition: Let A be pds. Then a finite set of vectors dl, d2, ... d

.s said to be mutually conjugate if
T

di A dk = 0 Vi k.

At this time, a number of propositions will be stated and

proved which summarize the properties of the PQN method.

Ultimately, these results will be used to prove convergence

of the PQN method.

Proosition 3.1: Let f:Rn * RJ1 be quadratiz and bj, J = 1, 2, .... n

be an arbitrary vector. If = x + b , and y,

g(j) - g(x), then y = A bj.

Proof: Since f(x) = xT Ax + bT x + c, we have

yJ = A(x + b ) - Ax = Abj, V J = 1, 2, .... n

At this point, it will be shown that the direction vectors

generated according to Step 2 of the PQN method form a set

of mutually conjugate directions.

Proposition 3.2: Let f: Rn - R 1 be quadratic and suppose

= (all a2' "''' an c In; c > O.
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If the sequence of linear systens shown in Step 2 of the

PQN method is solvable when d, a I and

i.-i

d =a.i + I c=2, ... , J

j z

then

i

Proof: This proposition will be proven in two steps. First, the re-

sult will be shown for the first iteration of the PQN method

and secondly, for all other iterations.

Since f is quadratic, the result of Proposition 3.1 implies

that y, = A a V j = 1, 2, ..., n in Step I of the PQN method.

By direct computation,

T T ~ ~T
d. A dk = A dk + c.j j A dk

1 .1
J=1

i-1
Y T c y (3.1.2.2-1)

J=1

Vi = 2, 3, ... , n and k = 1, 2, ... , i-1

In view of the structure of the linear system shown in Step

2 of the PQN method, it should be clear that the linear system

of equations may be written as follows:

i-1

~ c.SYdK (3.1.2.2-2)Yi dk + 2 ij YJ dk = 0(.12 -)

4 =1

Vi = 2, 3, ... , n and k = 1, 2, ... , i-1
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By the solvability hypothesis, however, the c 's can be found

to satisfy eqn. (3.1.2.2-2). But this implies that

d T A dk = 0 Vi 0k

Hence, the direction vectors generated during the first itera-

tion of the PQN method are mutually conjugate.

Now consider all other iterations.

In Step 5 of the PQN method, a, dj, V J - 1, 2, ... ,

i.e., the basis vectors are set to the most recent set of

mutually conjugate directions. Hence, y A d, for all remain-

ing iterations. Nov let a denote the updated value of d. Then

i-i k-i

d. A = + j) 0
j-1 £=i

V i = 2, 3, ... , n and k = 1, 2, ... , i-1

since the d 's are mutually conjugate.

The next result shows that if the function being minimized is

quadratic, then the linear system shown in Step 2 of the PQU method will

be solvable for all iterations provided it is solvable on the first iter-

ation, , To show this and other results, the following assumption is needed.

Ass tion A.1: Henceforth in this section we will assume that the algo-

rit1m is solvable on the first iteration.
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ProDosition .3: If : Rn  R is quadratic and {d.} is a set of
-3: If ~ ~ ~ i .1isaeto

mutually conjugate directions generated according to Step 2 of

the PQN method, then after one iteration of the PQN method the

coefficient matrix

T
Y, d ............ Ym-i d

C =
Mn-1

T" T
y d YT d
I d-1 Y...m- dm-1

becomes a positive definite diagonal matrix for all other

iterations.

Proof: Using -he result of Proposition 3.1, and the fact that the d's

are mutually conjugate, we have

yT d = dT A di = 0 V i (3.2.2.2-4)

Also, it should be clear that

T aT
yT d. = A d. > 0 since1 1 2.

A is positive definite symmetric. Since the off diagonal terms

of Cm_ are zero and the diagonal terms are positive, Cm I is

clearly a positive definite diagonal matrix after the initial

iteration.

The next issue to be considered is positive definiteness of

the update. That is, if we initialize the PQN method with a pds ipprox-

imation to the inverse Hessian, can it be guaranteed that the updated
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inverse Hessian is pds? The answer to this question is resolved by

Proposition 3.4 below.

Proposition 3.4: It -I is positive definite symmetric with 0 ) 0, then

H is positive definite symmetric

A* dT yj > 0 V j = ., 2, ... , n

Proof: The symmetric property is obvious from the form of the update

rule below:

T H(Ll) y (1+1~)ya)TH ~~ -(11 ZJ iJ-1 Y )

id J T y T H(1+1)dj yj Y J-1 -YJ

+ v 7T (3.1.2.2-5)

i J
where

7d U y ]
j =IJ 1 i T y yTH 1yYJ i j aJ-1

To show positive definiteness, the result is proved for 0 m 0

and then for € > 0. By direct computation, it is easy to show that

when = O:

T -2 (xT H(+l) 2
T (Z+l) T (Z+1) (xT d-l YxHx H x x H- -

d T yj yj T H _ yjy J H 1  yi

(3.1.2.2-6)

Let a = EH~l) I x and b = I yJ_1 LJ-1 J

Substituting these quantities into eqn. (3.1.2.2-6), we have

T H(1+I) X = (a T a) (bT b)-- (aT b) 2
x HbT b

b Tb
(xT d)

+ (3.1.2.2-7)Tdy
dyi J
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What we must show is that xT H (Z+ l ) x > 0 V x 0. The first
J-1

term in eqn.(3.1.2.2-7) can be shown to be positive semi-definite

using the Schwartz inequality [36] as follows:

(a T a) bT b - (aT b) 2 > 0

T T M 2(a a) (bTb) - (a' b) > 0

b b

Also, it is clear that:

(x T d 2
T >0 d yj > 0

dj yj

Thus, when € = 0, we have shown that:

T (i+1)
x TH x >0 Vx# 0

To show strict inequality we must show that:

(aT a) (b b)-(aT b)2  and

bT b dT yj

do not vanish simultaneously. Note that

(a a) (bT b) - (aT b) = 0

b b

only if a and b are colinear. But this implies .that x and yj are co-

linear, i.e.,

x=8y 0.

In this case, however,

T Tx j = j x = d y

since

dT y > 0 V j = 1, 2, n
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m'1
Therefore, 

* Cot.-

(aT )(bT b) -(a T b) 2 
(xTd

2

bT b an dT y

can't vanish simultaneously, Hence,

T (L+l)x H x>O V;x# O.
J

Now suppose $ > 0. In this case, the matrix $ v v T is at least pos-

itive semidefinite. Since the update given by eqn.(3.1.2.2-5) consists

of the sum of a positive definite matrix and at least a positive semi-

definite matrix, the update is positive definite.

Corollary: If H(W is pds and >0 0, then H( iP l ) is pds

447 J> 0 V J = 1, 2, ..., n

Proof: Since H is obtained from a finite sum of pds matrices,

R ( Y I ) is pds.

The next result shows that the set of mutually conjugate

directions generated by the PQN algorithm are also linearly independent.

Proposition 3.5: Let Z = (aI 02  '' n)= c In; c > O. If

f(x): Rn , RI is quadratic with dI =a and Assumption A.1 holds,

then for the ?QN algorithm the set of vectors dl, d2 , . . . I dn

are linearly independent.

Proof: Suppose there exist a. i = 1, 2 ... , n such that

a d + "''a d =0.

Then a dT A d + ... + a dT A d = a. dT A d 0, in view
1i 1 ni n i i

of the fact that the d's are mutually conjugate by proposition 3.2.

But since dT A d. > 0 due to the positive definiteness of A, a.

must be zero. But this is precisely what is required for the

d's to be linearly independent.
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The next two propositions are particularly useful in proving

the convergence of the PJN method.

Proposition 3.6: Let $ > 0 and H be given by eqn.(3.1.2.2-5).
Then H £ +I ) y -dj v J = 1, 2, ... , n

Proof: By direct computation,

T

HJ )(  Y0 
=,l2 Y* + T y

j dY

(s+,) T ( slt) TH i _ 1  y j y .H J - y + v T

T ( + ) di Jl 7J- T (i+l)
dy yH

J J-1 Yj

H i ll)

-J-1 YJ +  J- j-1 . yj + $ vj vJ

dj + v T y

dj * vjyj - 0 V J T, 2,..,

Thus, the proposition will be established provided we can

show vj v T yj = 0. If 0 = 0, the result is trivially true.

Therefore, suppose $ > 0. Then

=~ ~ T (+d H _ Y,

¢j yj "- YJ j Ty yj y(+l)-J £+J1 )J

d H£i y T

H T (L+ ) d d

0 'y j ' l Y dyTjzl

d T y d T y JJ-1

L - ( L.+ I) yT r ( + l )
H(Z+i) d y +J-1 YJ Y1 HJ-1 YJ

J-1 j 3 y T ( y+l)
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After some manipulation, it is easy to show that:

T H(11)_  T (L+1)
. dT y j 1 d 1 - .

H (d1 T l H(L+l) 0- 1  yj dj y j_ -1

Provosition3.7: If f(x): Rl - is quadratic, € > 0,.j w

A1w.H(e.+i) V n
(H(L+l) y ( (+l) )T

B-H (zl) + J-1 -1 .1'

- d T (H(+I) )
dj y Yj J-1 YJ)

+ 0 v vT 4*dT y1 > 0 J 09 1, ... ,n

where

..... LT (1.+1) Y J- F j2 4'(-1l j _T T. _z .
L 

y i YJT j.1 Y

then

A- 1 w Bw

Proof: Since f(x) is quadratic, from Proposition 3.1 we have:

A -1 yj = d i J = I, n

By hypothesis,

Fd d T (HOL+I) ( 9+i) Y) T

(B - 1 ) (H -1 A1  J-1 ,L T - T H(9,+l)
d1 y1  yj yJ i

+ v w(3.1.2.2-8)
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Also, the assumption that W'3

- H(Z+ 1)  A-1 (£+I)

A w J-i w A . H -1H(£+1) A l

Substituting d, = A-1 y and -E into eqn.(3.1.2.2-8)
yin J-

leads to:

(B - A- 1 w = 0

-A-lw Bw

Corollary 1: If H w = A w for some w E and f(x): Rn - R is
(J-1) -.

quadratic, then H w = A W.

Cogolagry (Fundamental Property of H)

:f f(x): Rn R1 is quadratic, then
H( +i) = -1 =

= A = dk V k j = 1, 2, . .. , n

The proof of Corollary I is obvious from Proposition 3.7 when

S l However, the proof of Corollary 2 is more subtle. To

prove Corollary 2, we shall use mathematical induction. Note that

since f(x) is quadratic, we may invoke Corollary I with w y k and Prop-

osition 3.1 to obtain

H Y = A- 1 Yk = "k for any k and j 1., 2, .... n

However from Proposition 3.6, we have

H yj = d - n.

Now let us assumey J-1 = dk V k < J-l. Also, by Proposition 3.6

J Yk = dk for k J ., 2, ... , n.

However, using Corollary 1 of Proposition 3.6 the fact that dk = A
-I

and the inductive hypothesis, we have

H(£+l) -2.
J Yk Yk = dk V k < J = 1, 2, ... , n

At this time, we are in a position to prove two very important

convergence theorems. The first result shows that the PQN method con-

verges exactly to the inverse Hessian of a quadratic function by
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performing Steps 1, 2, 3, and 4, while the second result indicates that

the PQN method will minimize a quadratic function in only one iteration

(Steps !, 2, 3, 4, and 5).

Theorem 3.1: If f(x): Rn - is quadratic and Assumption A.! holds,

then H (I) = A
- I.

Proof: Let x, z E Rnand suppose x - Az. Then

since f(x) is quadratic with A psd, A7I exist so that

z = A-1 X (3.1.2.2-9)

From Proposition 3.5, the di's 3 = 1, 2, ... , n are linearly

independent so they form a basis inR . Hence,3 j

J=1

Since f is quadratic, we may write:

n n

x = A z = 2 B A d j = ' yj

J=1 J=1

From the fundamental property of H, we have

H yj = d. J = i, 29 ..-, n
n j j

But by definition, H(I) H Therefore,
n

n n o

H(1 ) x s a j(Z) YJ 2 d = z (3.1.2.2-10)

J=1 J=l

using the fact that H(1 ) yj = d . But eqns.(3.1.2.2-9) and (3.1.2.2-10)

imply that

_I

H'( ) x = z = A -

Hence, H W = A-1.
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Theorem .2: if f(x): Rn R is quadratic, then the PO algorithm will

converge to the location of the minimum of f(x) in one itera-

tion 1rovided Assumption A.1 holds.

Proof: Let f(x) = x Ax + bT x + c. From Theorem 3.1, it is clear

that after nerforing Steps 1-4 of the PQOi method,

H A -

Using this result in Step 4 of the PQN method, results in a

single line search of the form:

min f (x(1) + t s)a 0 0

where

s - H - ( )  g(x
(1 ))

-A-I(Ai (1 ) + b) = -x(I ) - A- b

Hence, a0 must be found to minimize

( - x(1) - A-1 b) (3.1.2.2-li)

Since f(x) is quadratic, the minimum of f(x) is located at

x = -A-lb. Clearly, a2 = I minimizes eqn.(3.1.2.2-11) and

the updated solution is x(2 ) = -A-lb. Hence the procedure

converges in one iteration.

The analysis presented in this section indicates that one of

the major attributes of the PQN algorithm is that convergence will re-

sult after one iteration when the function being minimized is qaadratic.

This is significant because most highly efficient serial procedures

(such as the DFP method) can require at most n iterations to converge

in such cases.

It should be noted that the convergence results derived in

this section assume that the function being minimized is quadratic.

For nonquadratic functions, however, the convergence properties of the
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PQU algorithm will be demonstrated in the usual way by testing this

new algorithm on a set of standard test functions. This aspect is con-

sidered in the next section.

3.1.3 Test Function Performance

When a new minimization algorithm, such as the PQN method

discussed in the previous section, is developed, it is a common prac-

tice to compare it with existing methods using a standard set of test

functions. Some of the most common test functions used by researchers

in this area includes the quadratic function, Rosenbrock's function,

Powell's function, Woo-i's function, and the Helical Valley function

C26, 341. These functions and their properties are summarized below:

* Quadratic Function

f(x I , x 2 , x 3 ) = 12 + 2x22 + 5x 3 2 - 2x 1 x2

Exact Solution: (0 , 0 , 0)

Starting Approximation: (I , I , 1)

This function is rather easy to minimize and is included to

verify the finite step convergence property of quasi-Newton methods.

* Rosenbrock's Function

f(x1, x2) = 100 (x2 - x1 2)2 + (1- 2

Exact Solution: (1 , 1)

Starting Approximation: (-1.2 , 1)

Rosenbrock's function is particularly difficult to minimize

2
since the minimization must travel along the parabolic valley y = x.

* Powell's Function

f(XI X X+ 2 + 5(x,.f(xI , x2, x3, X4 ) = (xI + lOx2 )  4

+ (x 2 - 2x3)4 + 10(x I - X4 )
4

70



Exact Soluxtion: (0 , 0 , 0 , 0)

Starting Approximation: (3 , -1 , 0 , 1)

This function is difficult for a variable metric algorithm

to minimize because at the minimum the Hessian is singular.

* Wood's Function

f(xI, x2 , x3 X ) = l00(x 2 -x2)2 + (1 - x 2 + 90(x4 - x)

" (I - x3)2 + 10.1 [(x - 2 + (x4 - 2

+ 19.8(x 2 - 1) (x 4

Exact Solution: (I , 1 , 1 , 1)

Starting Approximation: (-3 -I , -3 , -1)

This function is difficult to minimize because the quadratics
2 2

xI  - x2 and x 3  - x4 form a set of level curves which are banana

shaped.

* Helical Valley

f(x, x2 , x3) = 100 [(x 3 - 100) 2 + 2  2 - 2 ] + x 2

2 33 X1+x23

where

2 tan- x2 /x for x] > 0

I  2/x for x < 0

Exact Solution: (1 , 0 , 0)

Starting Approximation: (-I , 0 , 0)

This function is rather difficult to minimize because the

minimum is located at the bottom of a helical valley.

The tes' ",nctions described above were used to study the con-

------ --- ----.... s of the PQN algorithm. 7n particular, the PDFP

'ere emplc.:ed to minimize these test functions. Also,

.-etbod. as we2l as the PVM method, were



employed to minimize the test functions previously described. "ne re-

sulting perf.rmance of each method is summarized in Tables 3.1-3.5.

The results indicate:

* Quadratic Function

In this case, the parallel algorithms converge in only one

iteration while the serial methods converged after three iterations.

Note that these results are consistant with theoretical results which

indicate that the PVM, PDFP and PBFS methods must converge in one

iteration (see Table 3.1).

e Rosenbrock's Function

For this function, the PVM and PBFS algorithms converge sig-

nificantly faster than the serial methods but the PDFP method

required more iterations to converge than the serial DFP method

(see Table 3.2). Since each gradient evaluation requires approxi-

mately the same time as two function evaluations, in this case,

the equivalent number of function evaluations required by each

method is:

26 x 2 + 6 3 = ll5 for PDFP

107 + 42 = 149 for DFP

Because the PDFP method requires fewer equivalent function

evaluations compared to the serial DFP method, the PDFP method will

actually converge faster than the DFP method even though more iter-

ations are required.

* Helical Valley

From the results shown in Table 3.3, the parallel methods

require fewer iterations to converge than the serial methods. Note

that the PVM methods converged the fastest in this case.
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" Wood's Function

In this case, the parallel algorithms once again converged

more rapidly than the serial methods. In factj the PVM method is

nearly 50% faster than the serial DFP method. Also, note that the

PBFS method is competitive with the PVM method this time (see Table

3.4).

" Powell's Function

As seen from Table 3.5, each of the parallel minimization

procedures converged more rapidly than the serial methods. All of

the parallel methods performed equally well on this test function.

In summary, the results indicate that without question the

parallel minimization procedures converge more rapidly than serial

methods. Also, it appears that the PBFS method is preferable to the

PDFP procedure.

Before a recommendation can be made as to which parallel

algorithm should be generally used, a robustness study should be con-

ducted. The term robustness used here is a measure of the relative

insensitivity of a parallel algorithm to the magnitude of Il iil

= 1, 2, ... , n. The issue of robustness will be addressed by vary-

ing the weighting parameter, c, associated with the set of linearly

independent vector

Z= (all 2) ...2 ) = c I; C > 0

required by the PVM, PDFP, and PBFS algorithms. In particular, the

robustness of these algorithms is demonstrated in Figures 3.0-3.3,

which were obtained by solving the set of standard test functions de-

scribed earlier with 10-9 < c < 10-3 .
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The results indicate:

e For Rosenbrock's function, the PDF? and PBFS algorithms are

more robust than the PVM algorithm, although the PVM algorithm

may require fewer iterations to converge (see Figure 31.).

* For the Helical Valley function, the PBFS and PVM algorithms are

more robust than the PDFP algorithm. Again the PVM algorithm

converges more rapidly than the other methods (see Figure 3.2).

* For Wood's function, the PBFS algorithm possesses the highest degree

of robustness. Note that for the PVM algorithm the total number

of iterations required for convergence increases very rapidly if c

is chosen too large. Also observe that the PDFP algorithm is more

robust than the PVM algorithm even though more iterations are re-

quired for convergence (see Figure 3.3).

* For Povell's function, the PDFP method is the most robust, although

the parallel minimization procedures all require approximately the

same number of iterations to converge over a wide range of c;

10- 9 < c < 10- 5 (see Figure 3.4).

In summary, the robustness study conducted here indicates

that the paerallel rank-two quasi-Newton methods (PDFP, PBFS) generally

are more robust than the rank-one PVM algorithm. The results also

indicate that the PBFS algorithm might be preferable to the PDFP method.

Although the PVM algorithm generally required fewer iterations to con-

verge, the PBFS algorithm might be preferred in view of its superior

robustness characteristics. Finally, the results obtained clearly

show that parallel rank-tvo methods are more robust than parallel

rank-one methods which was one of the major motivations for developing

the PQN method presented in Section 3.1.
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3.2 Parallel Methods for Integrating Crdinary Differential Equations

In this section, parallel methods for integrating ordinary

differential equations are discussed and compared. In particular,

Downs' method C37] and the Miranker-Liniger method [ 38] are discussed

in Section 3.2.1. In Section 3.2.2, -he Miranker-Liniger method is

extended to allow the integrazion step size to be automatically adjusted

so as to maintain a desired level of accuracy. To more fully appre-

ciate the speed and accuracy of the parallel variable step size inte-

gration method, it is compared with existing integration methods in

Section 3.2.3.

3.2.1 A Survey of Parallel Integration Algorithms

Before discussing parallel Procedures for solving initial-

value problems, let us first define the underlying problem and briefly

mention some possible approaches to its solution. Therefore, consider

the initial-value problem:

y(t) = f[y(t), t] t > to (3.2.1-1)

Y(t0) = Y0

where the initial time, to, and the initial condition, y 0 ' are assumed

to be known.

It is assumed that f: Rn  is continuous and differen-

tiable. The exact solution to this problem is only known for special

choices of the function f[y(t), t]. In general, however, the right-

hand side (MH) of eqn.(3.2.1-1) is so complex that only approximate

solutions may be found.

At the present time, many numerical procedures have been

proposed to solve initial-value problems. Some of these methods

include: Euler's method, Runge-Kutta methods, and predictor-ccrrector

methods [ 22].
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Currently, the fourth-order Adam's predictor corrector and

the Runge-Kutta-Fehlberg methods are among the most efficient proce-

dures for solving initial-value problems [39]. These methods, however,

are sequential in nature and as such are not suitable for parallel

computers.

Although many parallel computers exist at the present time,

only two parallel methods for solving initial-value problems currently

exist. These methods, due to Downs [37] and Miranker & Liniger 6 38),

surprisingly were developed nearly a decade ago. Apparently, this

area of research may be reconsidered in the near future, but, for now,

let us discuss Downs' method.

Downs' Method

One of the first parallel methods for numerically solving

an initial-value problem was reported by Downs in reference [37]. This

method was originally designed for use on the Illiac IV although it can

be executed on any parallel computer with N processors which are cap-

able of operating simultaneously.

To begin our discussion of this method, let 7TN = [tO, t I ,

tN_ 1 , tf] be a time partition of the interval [tO, t,]. Associated

with 7 N is a sequence of functions which will be denoted by

Y YIt,2 (t) 9l ()'

Basically, the approach taken by Downs is to construct a sequence
Ic N+l

(y k(t))k 1 in a recursive manner such that in the limit, the sequence
ksu1

approaches the exa:z solution of the initial-value problem under con-

sideration.

In reference [37], Downs gives two methods for computing

the recursion on a parallel computer. The first method is based upon
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computing a partial sum in 2 log 2 N steps. Downs indicates that

although this method is quite efficient on a parallel processor, such

as the Illiac IV, convergence can be slow. The second method pro-

posed by Downs requires more complicated computations but usually

leads to much better convergence. This technique is based on a first-

order Taylor series which also requires only 2 log 2 N steps to execute.

Downs shows that his procedure converges linearly to the exact solu-

tion of an initial-value problem provided that the initial approxima-

tion to the solution is sufficiently good.

The major problem with Downs' method is that the number of

processors needed to implement his procedures may indeed become pro-

hibitive. This is especially true if the RHS of the initial-value

problem is highly nonlinear since, in this case, the number of parti-

tion points (or processors) associated with the time partition ff
N

must be relatively large to ensure accuracy. This, along with the fact

that Downs does not present an example illustrating the performance

of his procedure, may cause one to be reluctant to use his method.

Miranker and Liniger's Method

Miranker and Liniger's class of parallel predictor-corrector

integration methods is based upon decoupling the predictor-corrector

equations such that the calculations required by the predictor and

corrector can be performed simultaneously on separate processors [383.

This may be achieved by forcing the corrector to lag the predictor by

one time step. In fact, Miranker and Liniger have shown that if

ti = t0 + ih i = 0, 1, 2,

where h is an integration step size parameter and Yi' y i, yc, f p , and

fc are denoted as the value of y(t.) the predicted value of y(ti)
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the corrected value of y(t 9, the value of fYP, t , and the value

of f , t, ]respectively, then the following predictor-corrector

pairs may be derived:

Parallel Trapezoidal Rule:

yC + 2h fp (3.2.1-2a)

yC = y + (h/2) (fp + f. C ) (3.2-1-2b)
2. i-. i i-i

Parallel Adams-Moulton (3rd order):

=+l = Y? 1 + (h/3) (7 f -2 f- 1 + f- 2 ) (3.2.1-3a)

C c + (h/12) ( 5Cf + 8 f c
S fi 2(3.2.-3b)

Parallel Adams-Moulton (4th order):

+ = Y? 1 + (h/3) (8 i 5 f i-1 + 4 fi-2 - f3)

(3.2.1-4a)

c c + (h/24) (9 fP + 19c
Yi Yi(-1 1 i - - +

(3.2.1-4b)

It is clear from the structure of the parallel predictor-

corrector pairs above that the predictor and corrector equations may be

evaluated at the same time if two processors are available. Also, note

that the computation time may be reduced by a factor of two if one of

these methods were used rather than a conventional (serial) predictor-

corrector method.

Miranker and Liniger extend this idea of parallel operation

on two processors to parallel operation on any even number of processors.

They also analyze the stability and convergence of their class of

methods by studying the root condition and local truncation error asso-

ciated with the theory of classical multistep methods.

Since the integration step size, h, is fixed for all time

in the parallel methods above, the accuracy and efficiency of these
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procedures may be greatly influenced by the choice of h. For example,

if the step size is too large, then the resultant solution will be

inaccurate. On the other hand, if the step size is too small, then

the efficiency of the algorithm is reduced since too many integration

steps would be taken. Thus, the problem of step size selection is

crucial to the successful application of this method. This observation

has led to a modification of the basic method which is the topic of

the next section.

3.2.2 PPC integration With Variable Step Size

In the previous section, a number of parallel predictor-

corrector (PPC) methods for integrating ordinary differential equations

(ode's) due to Miranker and Liniger were presented. The primary

advantage of using these methods over other procedures is the speed-up

of computation. Although the computations required by a PPC method

may be done extremely rapidly on separate processors, the accuracy

of the solution may suffer if the step size parameter, h, is not chosen

properly. Thus, it seems appropriate to modify Miranker and Liniger's

methods such that a prescribed level of accuracy can be maintained

while keeping the parallel feature of these methods.

This modification might be realized by using the predictor

and corrector values at the same time step to estimate the local

truncation error and use this quantity to vary the step size to achieve

a prescribed accuracy. However, since the corrector lags the predictor

by one time step in the PPC pairs described in the pre-ious section,

one might suspect problems with this approach. Indeed, this is true

and has been verified through simulation.
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In viev of the above, it appears that a better method might

be to use the predictor at step i+l and the corrector at step i to

estimate the local truncation error at step i which could be used to

automatically vary the step size.

In the remainder of this section, the ideas discussed above

will be used to extend Miranker and Liniger's class of parallel predic-

tor-corrector methods such that a desired level of accuracy ismain-

tained. Although each member of Miranker and Liniger's class of PPC

methods can be extended, the basic procedure will be demonstrated for

the parallel 4th order Adams-Moulton method given by eqns. (3.2.l-4a) and

(3.2.1-4b).

It is well known that the local truncation error associated

with the Adams-Mouflzon corrector (eqn.3.2.1-4b) is given by [19]:

di ,c Ay(t) -Y 720 h5 Y()( -" [to f]

(3.2.1-5)

Due to the form of eqn.(3.2.1- 4 a), we must estimate the local

truncation error of the predictor. Since eqn. (3.2.1-4a) is accurate

to O(h ), we will assume an exact solution of the form:

y(t) = t 5  t >t 0  (3.2.1-6)

so that y' = f(y, t) = 5t @ t > t (3.2.1-7)

By definition, the local truncation error associated with

the predictor is given by:

di+l,p  ti+I  i (3.2.1-8)

Substituting eqns. 3.2.1-6) and(3.2.1-7) into (3.2.l-4a) and evaluating

(3.2.1-8) at ti1 3 = 0, ti1 2 = h, t i 1 = 2h, t i = 3h, ti+ 1 = 4h, the

desired result is obtained:
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d 232 720 5 y(5) 2 C [to' t '] (3.2.1-9)ai+ , 720 a- '

Note that although the estimates of the local truncation errors given

by eqn.(3.2.!-5) and (3.2.1-9) are mathematically correct, they are of

little use numericall, . This is due to the fact that explicit calcula-

tion of y (5)() is c_,early problem dependent. To circumvent such

problems, we need a better method of estimating the local truncation

err-or.

To obtain such a method, we proceed by subtracting eqn.

(3.2,1-5) from (3.2.1-9) assuing 1i : 2 = 4 , to get:

Y~t ) YP (c _ ~, = 251 h5 y(5)

y(ti+l) P -(Yi- Y(ti)) 2 h y() (3.2.1-10)

Using this result and eqn.(3.2.1-5), it is easy to show that:

d -19 cc D (3.2.1-11)

i,0 251 1 - -il y

where

AY(ti l  -Yl~ti
y=

Using the Schwartz and triangle inequalities C361 on eqn.

(3-2.1-1l), we obtain the upper bound on the local truncation error

, -251 ic .+ + } (3.2.1-12)
-21 i i y

This result is particularly interesting because it indicates that

Id is directly proportional to Is I. This implies that to main-
I..,c y

tain a small local error at the corrector, the step size cannot be

too large since to Predict too far in advance may cause 16 y to be

large. Although this result is clearly what is needed, eqn.(3.2.1-12)

is not very useful as is because the 1 eyI is unknown. To overcome this

difficulty, we may write a Taylor series approximation for y(t) eval-

uated at t = ti+1 as follows:
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y(ei+l) = Y(tj) + hi f [y(ti), tj 1+ 0(hj2)

where

hi = At - t > 0.
-= i+1 2.

Thus, we have

16 h, If [y(t.), t ]i + 1(h2) (3.2.1-13)

If we substitute eqn (3.2.1-13) into eqn.(3.2.1-12), we

have a means of estimating the local truncation error of the corrector

numerically as follows:

I < 19 - P I + h If(YF, t)l} (3.2.1-14)
c --251 i - +]' i Yi j

Finally, this result can be utilized to automatically vary the step

size, h,, until a desired accuracy is obtained. More specifically,

this may be achieved by performing the following steps:

Step 1: Simultaneously evaluate the predictor and corrector eqns.

h + c -

1+ 11 3 11 i- 3 3..-1a
c c h i  a ,

y Y- 1 + 2 + i-l - 5fi-2 fi-3' (3.2.1-15b)

Step 2: Estimate the local truncation error:

i,c 251 ( 1+hi

Step 3:

a. If Emin I d i,c i Cmax, the step is accepted so set i , i+l and go

to Step 1.

b. If di > eyax' then the local truncation error is too large. Therefore,

replace hi 4 h,/2, restart method and go to Step 1.

c. If di < C min' the solution: is more accurate than desired. Therefore,

replace hi 4 2hi , restart method, set i 4 i+l, and go to Step 2.
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The sequence of computations required by eqns. (3.2.1-15a) and

(3.2.1-15b) is illustrated in Figure 3.5 below.

1- -2 ,1

I

Figure 3.5 - The Sequence of Comp utations of a
PPC Integration Procedure

The upper line represents the progress of the computation

at the mesh points for the predictor while the lower line shows the

progress of the corrector. The dashed line is referred to as a compu-

tation front. The arrows in Figure 3.5 indicate that the computations

at the mesh points ahead of the computation front only depend on infor-

mation behind the front w-hich is characteristic of a parallel integra-

tion algorithm. The method can be implemented by simultaneously

evaluating the following quantities in separate processors:

Y i .4 f p+ i+l .

c/

. . .. .). Yi "0 f . .

Before leaving this section, a few words should be said about

starting the parallel variable step size integration scheme. Note

that to start this method tne following quantities must be available

to the parallel processors:
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c C C c C C C ndP
Y0, 0' ' ' 2 3 3

These values may be obtained by taking four forward integra-

tion steps of a standard Runge-Kutta (RK) integration method since RK

methods are self-starting. The values of y(t) and f y(t), t] computed

over the first three time steps may be used by the corrector while the

value of y(t) and fy(t), t] at the fourth time step can be used to

initialize the predictor. At this point, enough information is avail-

able to begin processing in parallel using the parallel variable step

size integration scheme.

3.2.3 Comparison of Methods

In order to determine the effectiveness of the parallel

integration procedures discussed in the previous sections, these methods

were used to find the solution of the forced Van der Pol equation [37]:

)e (t) + a(t) (1 - x2(t)) i(t) - x(t) + u(t) = 0 (3.2.3-1)

where

a(t) is a parameter which defines a particular systems

dynamics and u(t) is a forcing function or control.

To solve this problem by the parallel integration procedures

previously discussed, we must write eqn (3.2.3-1) as a system of first-

order differential equations. If we let x (t) = x(t) and x 2(t) =

then eqn (3.2.3-1) may be written as:

kl(t) X2(t) (3.2.3-2a)

= a(t) (1 - x1 2(t))x 2(t) - xl(t) + u(t) (3.2.3-2b)

in the simulations, the control was selected as:

u(t) = sin 1 t t > 0

/T
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since this input will cause x(t) to be uniformly asymptotically stable

[40]. Also, in the sinulations a(t) was set to zero and the initial

conditions were chosen as:

X = and x20 I + 2

:n this case, the exact solution of eqn ,3.2.3-2) is given by:
1

x (t) = cos t + sin t + 2 sin- t

t >0

x 2(t) = cos t - sin t +- cos - t
2' 2 /

At this point, Miranker and Liniger's fourth-order parallel

integration method (PPC42) and the parallel variable step integration

procedure (PPCh2V) were used to obtain a numerical solution to Van der

Pol's equation when a(t) E 0. Let us denote the computed solution as

x(t) and the exact solution as x(t).

In Tables 3.6 and 3.7, x(t), 2(t), and the error x(t) -

2(t) are shown over a five second interval. The results indicate

" By using the PPC42 procedure with a fixed step size of h = 5./200 =

0.025, the computed solution is accurate to about 6 di'gits (see

Table 3.6) which substantiates the claim that the PPC'12

procedure is accurate to O(h').

" The PPC42V integration procedure can indeed vary the step size to

meet a 5-6 digit accuracy requirement imposed by the user (see

Table 3.7). To obtain the computed solution shown in Table 3.7, the

PPC42V procedure only took !40 integration steps while the PPC42

procedure required 200 integration steps.

The secord example which was considered is when a(t) z 1

V t E [0, 5]. In this case, an analytical solution to the Van der Pol
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equation is impossible to obtain. Nevertheless, an approximate solu-

tion can be obtained by employing the parallel integration methods.

For this example, the results indicate that the solution

obtained using the ppc42 procedure (h = 0.005 and fixed) and the variable

step PPC42V method agree to about 5 digits (see Tables 3.8 and 3.9).

It is interesting to count the number of integration steps

required by each procedure. Clearly, for the fixed step size method

5/0.005 = 1000 integration steps were needed. For the PPCI42V method,

however, the number of integration steps needed depends largely on the

behavior of the solution x(t). Note that in regions where x(t) varies

rapidly many integration steps were required while relatively few steps

were taken when x(t) was nearly constant (see Figure 3.6 and Table 3.9).

But this is precisely what we would expect a good variable step size

method to do.
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FIGURE 3.6: Solution of~ Van der Pol's Equation
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CHAPTER FOUR

IBLEITATION CONSIDERATIONS

Thus far, this thesis has primarily been concerned with the

development of efficient numerical methods for solving nonlinear

estimation and control problems which are suitable for modern parallel

computers. I i this chapter, the implementation of these methods is

considered. In particular, a parallel computer architecture is pro-

posed in Section h.1 which utilizes three levels of parallelism to

allow the implementation of the parallel algorithms discussed in

Chapters Two and Three. In Section 4.2, the execution time of the

parallel algorithms is estimated and compared with that of currently

used sequential methods. Finally, the speedup due to parallelism is

estimated using the timing equations given in Sections 4.2.3.

4.l A Parallel Computer Architecture

Whereas most existing computer systems (parallel or serial)

have been designed as general purpose machines, the parallel

computer proposed in this section may be considered a special purpose

machine for implemnting the parallel algorithms discussed in Chapters

Two and Three. The architectuWe of the proposed computer utilizes many

independent processors capable of operating simultaneously such that

more processing power would be possible than a single central proces-

sing unit with traditional architecture. Although there is no reason

to believe that the architecture of the proposed parallel computer is

an "optimal" implementation of the parallel algori.thms described in

Chapters Two and Three, it may be viewed as a "natural" implementation.
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in view of the structure of the parallel algorithms developed

in Chapter Two and Three and the availability of low-cost microproces-

sor systems (available on a single aij x 11 inch card), the proposed

parallel computer is organized into three levels of parallelism; namely:

" Level I (inimization Level)

" Level I (Shooting Level, if applicable)

" Level III (Integration Level)

To reduce the possibility of coordination and synchronization

problems with each level, the proposed computer should be synchronous

and utilize a single-instruction-muliple-data (SV. ) stream to effi-

ciently implement the parallel algorithms. Other considerations which

should be of interest include:

* Timing requirements for real time control computations

(Specifying processor add, multiply and transfer times

such that the execution time is rapid enough to permit the

nonlinear estimation and control computations to be

done in real time.)

* Memory and peripheral recuirements

e Effects of wordsize

* Communication and inteiconnection among processors

* Feasibility of implementation and, of course, cost.

With these considerations in mind, the organization of

each level of the proposed parallel computer will now be described.

4.1.1 Minimization Level

The minimization level (Level I) is the upper level of the

architecture in which a finite-dimensional minimization problem, and
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a search for the appropriate unknowns (parameters or boundary

conditions) is initiated. If M is the number of unknowns to be

optimized, then the search for the unknowns can be performed simul-

taneously by M optimization modules. Each optimization module might

consist of a processing element (PE), a local memory (LM) element, ana

an integration module (IM). Because we want the searches to be per-

formed simultaneously, the structure at this level might be organized

as shown in Figure 4.1. Notice that this parallel structure is

ideally suited for evaluating a function and its gradient at M distinct

points simultaneously which is precisely what is required to implement

the parallel minimization algorithms discussed in Section 3.1.

At this level, the role of the central processr (CP) is to:

9 Initialize each processor

w Control the operation of each processor

" Monitor the status of each processor

" Watch the clock and controls -:o keep the processors

synchronized during a given iteration

As indicated above, the role of the optimization modules is

to implement the minimization phase of the parallel algorithms dis-

cussed in Chapter Two. Because the mathematical computations required

by the parallel minimization algorithm discussed. in Section 3.1 are

relatively sophisticated, the processors at this level should be also.

In fact, the PE's should be pipelined so that the required vector-

matrix operations can be performed very rapidly.

Since speed is a primary concern, cache memories might be

applicable for the local memory units at this level.
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As shown in Figure 4.1, the connection of adjacent proces-

sors is not necessary since, by design, the parallel algorithms of

Chapters Two and Three allow nearly all computations to be performed

independently of the others. Note that this indicates that relatively

little (if any) communication is required among the processors at

this level.

Finally, because of the large dynamic range of the computa-

tions required by quasi-Nevton methods, the wordlength required

should be relatively long.

4.1.2 Shooting Level

If parallel shooting is used to aid the search for the

unknown boundar- conditions, then the mission time interval [to0 tff

would be divided into N subintervals using the partition

to < t1 < .... < t N = tf

The task of the processors at this level is to implement

the parallel shooting phase of the parallel algorithms discussed in

Sections 2.1 and 2.2 by finding the solution to the appropriate

initial-value problem over each subinterval simultaneously in parallel.

This phase of the algorithm might be implemented using the parallel

structure shown in Figure 4.2.

At the shooting level (Level I), the role of each PE is to:

e Initialize the integration module

* Monitor the status of each integration module

9 Co unicate with the processors at Level I and Level II

to keep computations synchronized.
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Since the processors at this level are mainly used for

"bookkeeping" and "status checks," the PE's need not be very

sophisticated. Also, the local memory units shown in Figure 4.2

might be relatively smal.i in view of the primitive operations per-

formed at this level. Note that if parallel shooting is not used,

then this level is not necessary. In this case, the integration

module required at Level I simply consists of a refined integration

module which is discussed next.

4.1.3 Integration Level

At the integration level (Level III), the processors are

dedicated to the task of integrating ordinary differential equation

(ode's) over a subinterval using a parallel integration scheme such

as the methods presented in Section 3.2.1. These methods are sug-

gested for the numerical solution of the initial-value problems

(IVP's) over each subinterval since computations can be sped up

significantly by utilizing more than one processor operating in

parallel on each ode. To further speed computations, a parallel

integration method could be used to integrate each component of the

right-hand side (RHS) of an IVP. If "L" processors are available
th

for integrating each component of the RHS and the IV? is n order,

then this phase of the parallel algorithm might be implemented as

shown in Figure 4.3. Note that when L = 2 the structure shown in

Figure 4.3 is ideally suited to implement the parallel predictor-

corrector pairs presented in Section 3.2.

With regard to processor and memory requirements, the

processors at this level must be somewhat sophisticated, due to the
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mathe-atical computations involved when evaluating the RHS of an

.T. The processors, however, need not be pipelined because the

couta:ions requred by the parallel integration procedures do

no: warrant it. Nevertheless, the processor add and Multiply time

shculi e as small as possible since the integration phase generally

is the nos-t time consuming phase of the parallel algorithms dis-

cussed in Chapter Two. Again, since speed is crucial here, cache

memories should be employed at this level.

Because the numerical solution of an IVP involves knowing

the solution aC many points, the solution stored in the local memo-

ries should be accessible to all processors. Generally, in situations

like this, two or more processors may attempt to access the same

memory module during a memory cycle. This phenomenon is called

"memory contention" and is usually rectified by providing the system

vith a "memory lock."

The function of the memory lock is to preclude access by

other processors once a processor has initiated a memcry access.

Since only one access can be made per memresr cycle, one of the

requests must wait. For -he sys-ten to be efficient, however, the

wait time should be no more tha= r.e :r :'c memo=r cycles.

4.l.4 Coordination of Each Level

Now that 37-:-,3-' ; I-.: .nctlcn of each level has been

discussed, the operati:n zf - , V.-ez w:.1 be briefly

described.

Basically, the pa-. 1e wcelzo::g ":ouli begin at Level

and proceed to Levels ani as f- !ios. At level -, th. :entral
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-rocessor would initialize the PE's "with an initial approximation of

the state and costate variables at the partition points of the

parallel shooting algorithm. This information, along with the

initial and final times associated with each subinterval, would be

transferred to Level II where the paralle! shooting phase of the

algorithI would be initiated. When a function and/or gradient

evaluation is required, the processors at Level III would be activated.

At Level III, each processor would simultaneously integrate its

assigned initial-value problem over its assigned subinterval and use

its local memory as -temporary storage foQr intermediate results. When

the integration phase is complete, the results would be transferred

to global memory which then would be accessed by the central processcr

for the values needed to evaluate an appropriate error f'unction.

Finally, the central processor would evaluate the error function and

decide whether to continue computations or halt.

Although i appears that, while one group of processors are

busy at a given level, the remaining processors are idle, this is not

the case because the i-le processors are really performing statts

checks and other utility unctions.

4.2 Parallel Algorithm Execution Time

The goal of this section is to analytically determine a set

of timing equations which can be used to estimate the execution time

of the parallel algorithms discussed in Chapters Two and Three. The tim-

ing equations are also used to compare the execution times of different

algorithms, as well as to estimate the speed-up due to parallelism.
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One way to estimate the execution time of the parallel

algorithms would be to compute the time required per iteration by

taking into account that mary arithmetic operations would be per-

formed in parallel. This can be done by counting the total number

of additions, multiplications, function evaluations, and gradient

evaluations for a given iteration and multiplying the operation

count by representative execution times for these operations. By

adopting this approach, one may estimate the time required for con-

vergence by using a serial computer (such as an IBM 360) to deter-

mine the number of iterations needed and multiply this by the estimated

time per iteration. Note that this estimate, however, would be

problen dependent and that communication time between processors and

memory is ignored.

The assuption that processor-memory comunication time can

be ignored is realistic since for many nonlinear estimation and control

problems the mathematical computations performed by each processor

-would be significantly more time consuming than memory access time.

The execution time of the parallel algorithms will be estimat-

ed by deriving a set of timing equations for the- minimization ;hase and

integration phase separately. At the end of this section, the timing

equations are combined to provide an estimate of the execution time of

the entire parallel algorithm. At this time, it sholld be pointed out

that the timing equations given in this section are derived assuming

the parallel algorithms are executed on a parallel computer whose

architecture is consistent with that discussed in Section 4.1.
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h.2.1 Minimization Phase

In this section, the total number of arithmetic operations

required by the CI1, ?VM, ?DF7 ? d PFS procedures discussed in

Section 3.1 are counted assuming many of these operations Can be

nerformed in parallel. To form a basis for comparison, an operation

count is also given for the serial ZP, DFP, and BFS procedures

assuming these algorithms are executed sequentially. To derive the

operation count for each of these methods at this time would be very

time consuming and repetitious. Therefore, only the operation count

for the PQN algorithm will be derived at this time.

Since step 1 of the PQN algorithm can be considered an

initialization step, one iteration of this method essentially con-

sists of steps 2, 3, h and 5. Therefore, the operation count

will only include the arithmetic operations required to per-

form steps 2 - 5. The operation count will be derived by counting

the arithmetic operations required by each step, one at a time, and

combined at the end to obtain an overall operation count.

Starting with step 2 then, observe that a sequence of linear

systems of equations must be solved during this step. To solve each

linear system as rapidly as possible, any one of the following algo-

rithms discussed in references r -4], [15], and [41] may be employed.

Among these methods, the procedure reported by Pease ['I] is pre-

ferable since it only requires n processors and, as such, could be

implemented on the parallel computer proposed in Section 4.1.

3asically, to solve a general linear system of the form

ax = b where aeR£n x n and x,bE:nrx using Pease's algorithm, we must
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augment the "a" matrix with the vector "b" by placing "b" in the

n~l column as follows:

A = (a~b]

and solve x = a-lb by performing the following operations in parallel

on the rows of A.

for J = 1 step 1 until n do

begin ti-aij/a j i=1,2,...,n i#J

for k=j+l step 1 until n+l do

a ik +,a k-t ia jk i=1,2,... ,n i#j

end;

xi 'ai,n+l/a ii i=l,2,...,n

If the arithmetic operations required by Pease's algorithm

are counted assuming they are done in parallel, then only n(n+l)/2

additions and n(n+3)/2 multiplications are needed by this method.

Note that this is significantly faster than a serial Gaussian-

Elimination procedure which required O(n 3 ) multiplicazions and addi-

tions. In summary, if Pease's algorithm is used to solve the linear

systems required in step 2 of the PQN method, then n(n+l)/2 additions

and n(n+3)/2 multiplication must be perfozmed for each system of

equations. Note that the linear systems in step 2 are increasing

in size and step 2 must be executed n-l times. Therefore, the total

number of operations which must be performed during step 2 is given

by:
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j(jil) + V

a-,

= (i2 (A+M) + s(a 3M}

i=.

A+M n(2n 2-3n+1) A+N4 rf(flJ.)x
2 + 2 "--

:n(n 2_)A + n(n 2+3n-4) M
2 2

where A and M represent the addition and multiplication operations

respectively.

In step 3a. of the PQN algorithm n+! gradients must be

evaluated but if n+l processors are available to perform the gradient

evaluations (ge's) simUtaneousl then equivalently only one ge is

performed. Also, the a vector addition can be performed in parallel.

Similarly, in step 3b, the n gradient differences may be done simul-

taneously. Hence, 2n additions and lge are required in step 3.

In step h., the inverse Hessian, H, is updated using n

rank-two corrections in which the vector-matrix operations can be

performed in parallel. By straightforward evaluation, it can be

shown that (8n 2+lln) multiplications and (Tn2 +2n-2) additions must

be performed in step 4 of the PQN algorithm assuming "n" processors

are utilized for each vector-matrix operation and > 0. If - 0,

then the update is somewhat simpler and as a result only (4n 2 +4n)

multiplications and (3n 2+n) additions would be needed.

In step 5, a single line search is required. If we asstue

'L" function evaluations are performed during the line search and
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f(x (  is evaluated, then L+l finction evaluations are performed

during this step.

To obtain the overall operation count, the operation counts

obtained for steps 2 - 5 are combined. Hence, the overall operation

count for one iteration of the PQU algorithb is given by:

PQN: (7n2 +hn+n(n 2-)/6-2)A

" (8n2+lln+n(n 2 3n-4)/6)M

" (L+l)FE+lCE

n denotes the dimensionality of the problem,

A denotes additions

M denotes multiplications

FE denotes function evaluations

GE denotes gradient evaluations,

and L denotes the number of function evaluations during a

line search.

Using the operation count above, it is a simple matter to

estimate the execution time for one iteration of the PQN algorithm.

Specifically, if t a, tm 'tfe, and tge denote the processor add time,

processor multiply time, the time required for one function evaluation,

and the time required for one gradient evaluation respectively, then

by multiplying the operation count above by these quantities the

execution time for one iteration of the PQ may be obtained as follows:

PQN: (7n2 +n+n(n -1)/6-2)At a

+ (8n 2+lln+n(n2 +3n-h)/6)Mtm

(L+I)FEt fe+lGEt ge (4.2.1-2)
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Recall that, when = 0 ( = ! ) in the PQN algorithm,

the PDFP (PBFS) method is obtained. Observe if 0 = 0, then

the update in step 4 is somewhat simpler and the time per ,.teration

is reduced to:

PDFP: t . = (2n + 3n + n(n2-1)/6) Ata + (4n2 + 4n

" n(n2 + 3n - 4)/16) Mtm + L + 1) FEt- + L + ) F~fe

+ 2 GEt (4.2.1-3)ge

Also, note that the time for one iteration of the PBFS method

is the same as the PQN algorithm since the PBFS method is only a spe-

cial case of the PQN algorithm when ¢ > 0.

Following a similar procedure as outlined above, the execu-

tion time of one iteration of the CM and PVM procedures can be shown

to be:

CM: ti= (5 + n) Mt + (3 + 2n) At + (L + 1) FEt

(4.2.1-4)
PVM: tpi -(2n + n[4 + 3(n-i)/2 - 1)A

t - 'Ata

2+ (2n + 3n[i + (n-l)/2] + 2) Mtm

+ (L + 1) FEt + 1 GEt (4.2.1-5)
fe - ge

As indicated earlier, it is useful to estimate the execution

time for one iteration of the ZP,DFP and BFS procedures assuming all

computations are done sequentially. By performing an operation count

and multiplying it by representative execution times, it is straight-

forward to show that the execution time of one iteration of the serial

methods are:
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ZP: t (n +3n+2)Mt (n2 + 4n + l) AtZP pi ( 2 +3+2)tm a

[ (n + 2) L 1] MJ fe (4~.2. 1-6)

DFP: tp= (6n 2 + 3n) Mtm + 4 n2 + 2n - 2).At

+ (L + 1) FEt fe + I GM ge  C4. -2.1-7)

BFS: t(pi -n 2 + 4n + 2) Mtm +(4 2 +5 4)At

+ (L + 1) M fe + I GEtge (4.2.2-8)

Note that if the number of additions and multiplications per-

foxmed during one function and gradient evaluation were known, then the

execution time could be estimated as a function of processor add and

multiply times. In the next section, tfe and tg e will be estimated in

terms of t and tm which will allow the speed-up due to parallelism to

be estimated in Section 4.2.3.

4.2.2 Integration Phase

In the previous section, the execution times of the minimiza-

tion phase of the parallel algo:-ithms discussed in Chapter Two were

estimated in terms processor add time, multiply time and the time re-

quired for a function and gradient evaluation. In the context of the

parallel algorithms described in Chapter Two, a function (or gradient)

evaluation consists of integrating a set of differential equations over

an appropriate time interval and evaluating a suitably defined error

function.

Thus, the function (or gradient) evaluation time depends pri-

marily on the numerical integration method employed and the complexity

of the differential equations being integrated. This will be made more

precise by estimating the execution time required by the parallel
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predictor-corrector (PPC) method discussed in Section 3.2 and comparing

it with the execution time required by a serial Adam's predictor-

corrector (APC) method.

To begin, consider the PPC integration method defined by:

p = c h c(8fp-5f +4fc' f c)
i+l 1-1 3 i i-1 i-2-i-3 (4.2.2-1)
C c h +f 

= i-i +19f- i-2 -c (4.2.2-2)

As described in Section 3.2, the predictor and corrector

equation above may be evaluated simultaneously on two separate pro-

cessors. Also, the right-hand-side (RHS) of the initial-value

problem (IVP) can be evaluated simultaneously since the sequence of

computations is

PE#1:.. "" YPi+l f1+1i+l

By performing the computations in this manner, effectively

only one RHS evaluation is performed at each step. Also, when evalu-

ating eqn. (4.2.2-1) and (4.2.2-2) four additions and five multiplica-

tions must be performed. Therefore, the total number of arithmetic

operations which must be carried out per step is:

hA+ 5M+lRHS (4.2.2-3)

Now suppose N steps are taken to solve an IVP over some

interval of time. Then the time for one function evaluation may be

estimated using the following expression:

t = 4NAt +5NMt +lNRHSt
fe a mn rhs (4.2.2-4)

where t rh is the time required to perform one RHS evaluation.

Finally, if there are Arh s additions and Mrh s multiplications when

evaluating the PS of an IVP, then tfe may be estimated as follows:
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tfe = (4i+Ar s )NAt a+(5+lMrhs )NMtM (4.2.2-5)

Note that, if the function being evaluated is a function

of n variables, then the gradient of such a function has n coponezts.

If we assume that each component of the gradient requires approxi-

mately the same time to evaluate as the function itself, then the

time required to evaluate the gradient is approximatelr

tge = ntfe (4.2.2-6)

To form a basis for comparison, it is instructive to count

the total number of arithmetic operations which must be performed by

the serial Adam's predictor-corrector (APC) pair:

(4.2.2-7)
y+i=y' + h (55 fP- 59 f' + 37fC 9fc

i +- 24-1 + 3 fi-2 - 9 3

cl c + p +19fc c c )
i i (9 +1 i i-i 2 (4.2.2-8)

From eqns. (4.2.2-1) and (4.2.2-8), it is straightforward to

show that BA + llM + 2PHS operations must be carried out sequentially

to implement the serial APC pair.

As before, if Arh s additions and Mrh s multiplication are

performed during a RHS evaluation, then the time required for one

function and gradient evaluation is simply:

t fe = ( 8+2Arhs )NAt a+ (i +2Mrhs ) NMt (4.2.2-9)

and

tge = nt fe (4.2.2-10)

Note that two RHS evaluations must be performed at each

step of the serial APC method while only one RHS evaluation was

required by the parallel APC. Since a RHS evaluation is the most
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time consuming operation that must be performed, the PPC

method will execute nearly twice as fast as the serial APC method.

Ideally then, the speed-up due to parallelism would be approximately

two in this case.

4.2. 3 Overall Execution Time

In Section 4.2.1 and 4.2.2, the execution time of the

minimization phase and integration phase of the parallel algorithms

discussed in Chapter Two was estimated. Also, in these sections,

the timing equations for some widely used serial procedures were

given. In this section, these results will be utilized to estimate

the execution time of the overall algorithm, as well as the speed-up

due to parallelism.

To estimate the overall execution time of the parallel

algorithm discussed in Chapter Two, we simply substitute eqns.

(4.2.2-5) and (4.2.2-6) into one of the timing equations for the

parallel minimization algorithms. Similarly, the overall execution

time of a completely serial method mnz be obtained by substituting

eqns. (24.2.2-9) and (4.2.2-10) into one of the timing equations

associated with the serial minimization procedures.

For example, if the serial ZP or DFP method were used

with the serial APC method, the overall execution time for one

iteration is:

ZP/APC:

tpi {n 2+3n+2+[(n+2)L+l](ll+2M rhs )N}Mtm

+{n 2+hn+l+[(n+2)L+l](8+2Arhs )N}Ata  (4.2.2-11)
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DFP/APC:

tp . -{6n 2+3n+(L+n+l)(ll+2Mh)N ) Mt

+{4n 2+2n-2+(L+n+l)(8+2Arhs )N}At a (4.2.2-12)

On the other hand, if the CM or PVM algorithm were used with

the PPC integration method, the time per iteration of the overall

algorithm would be:

CM/PPC:

tpi = { 5+n+(L+l)(5+M hs )N}Mt m

+{3+2n+(L+l)(4-Arhs )N}Ata  (4.2.2-13)

PVM/PPC:

ti = {2n 2+3n+2 3 (n-l)+ ( +M  )N }M t (4.2.2-1)

+{2n2+4n-13 (nl) +(L+n+l) (4+Arhs)N}a (.2.2-11

Note that if the processor add time, ta, and multiply time,

tin were known along with M, L, N, Arhs and Mrhs, then the time per

iteration, t., could be estimated using eqn. (4.2.2-11), (4.2.2-12),

(4.2.2-13) or (4.2.2-14). Also, the timing equations may be used to

estimate the speed-up due to parallelism, the details of which are

given in the following theorem:

Theorem 4.1: Let N >> n 2 and 2(Mhs+Arhs) > > 19. Then the speed-up

.duoe to parallelism, S, satisfies the following inequali-

ties:
t of the DFP/APC methodi. S A > 2
tpi of the PVM/PPC method >2

tp of the ZP/APC method 2[(n+2)L+l]

t of the CM/PPC method > L+1pi
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Proof: To prove i. : Dividing eqn. (4.2.2-12) by (4.2.2-14) and

2using the fact that N >> n , we have

S = 19+2(Mrhs+ Arh3
9+Mrhs +Arhs

But since 2(Mrhs+Arhs) > 19, S may be bounded from below as follows:

s > 19+19 2.054 > 29+19/2

To prove ii.: Dividing eqn. (4.2.2-11) by eqn. (4.2.2-13) and

2recalling that N >> n , we have

S = (n+2)L+l f19+2(Mrhs+Arhs)

L+1 9+rhs+A rhs

But 2(M rhs+A rhs) > 19 implies that

S > 2.054[(n+2)L+!] > 2[(n+2)L+l]L+1 L+1

To illustrate the impact of parallelism, as well as the

tightness of the bounds given byTheorem 4.1, suppose t = 200 nsec,a

tm = 1000 nsec, n=9, L=4, N=100, A rhs=33 and M rhs=43. Then by sub-

stituting these quantities into eqns. (4.2.2-11), (4.2.2-12), and

(4.2.2-14), we have:

t = 0.45D3 seconds for ZP/APCpi

t . = 0.1432 seconds for DFP/APC
pa

t. = 0.02721 seconds for CM/PPC

t. = 0.0710 seconds for PVM/PPC

Observe that the results above indicate that one iteration

of the parallel algorithms require significantly less time to execute
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compared with the serials methods. This, along with the fact that

the parallel algorithms generally require fewer iterations to con-

verge compared with serial methods (this was demonstrated in Section

3.1.3), makes the parallel methods very attractive. Furthermore,

the speed-up ule to parallelism in this case is:

GRADIENT-DEPENDENT MTHODS:

s = o.1432 = 2.017 > 2.00. 0710

NONGRADIENT MTHODS:

S = 0.4503 = 16.548 > 16.4
0.02721

Note that the lower bounds above, which were obtained from

Theorem 4.1, are rather close to the actual speed-up calculations.

Finally, from eqns. (4.2.2-11), (h.2.2-12),(4.2.2-13) and

(4.2.2-14), it can be observed that if many integration steps are

needed to solve a given initial-value problem, then the integration

phase of the parallel algorithm requires much more time to execute

compared with the minimization phase. Thus, it is very important to

use an efficient, yet accurate, integration method. This observation

was the primary reason for developing the parallel variable step size

integration method discussed in Section 3.2.3.
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CHAPTER FIVE

PERFORM ICE OF PARALLEL ALGORITHMIS

In this chapter, the performance of the parallel identifi-

cation, estimation and control algorithms devised in this thesis will

be evaluated. In Section 5.1, the robustness of the parallel variable

metric algorithm discussed in Section 3.1.1 is demonstrated by solving

an optimal control problem associated with a Van der Pol process.

All aspects of the parallel algorithms are tested including parallel

shooting and adaptive mesh selection. In Section 5.2, the perfor-

mance of the parallel state and parameter estimation algorithms is eval-

uated by identifying the aerodynamic parameters and the initial state

of the lateral equations of motion for a T-33 aircraft. The indirect

and direct control algorithms developed in Section 2.1 are then util-

ized in Section 5.3 to design a controller for controlling the longi-

tudinal eqaations of motion for a F-6 Crusader aircraft. Finally, in

Section 5.4, the performance of the parallel adaptive control algo-

rit'hs discussed in Section 2.3 is evaluated for the F-8 aircraft.

To establish a basis for comparison, the serial Davidon-

Fetcher-Powell (DFP), Broyden-Fietcher-Shannc (BFS), and Zangwill-

Powell (ZF) methods, along with Straeter's parallel variable metric

(FVM) algorithm, the Chazan-Miranker (CM) method, and the parallel

quasi-Newton (P N) method will be employed to minimize the alpropriate

error functions described in Chapter Two. The gradients required by

the variable metric algorithms were obtained by finite-differencing

and the line searches were implemented by fitting a quadratic function

through three points. All of the parallel algorithms were coded in
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FORTRAN IV and executed on an IBM 3033 (a serial computer) since a

parallel computer was not accessible.

5.1 Evaluation of Parallel Algorithm Performance

In this section, the Van der Pol system presented in Section

3.3 will be used to study the following:

" The robustness of the parallel variable metric algorithm discussed

in Section 3.1.

" The convergence properties of the indirect control algorithm dis-

cussed in Section 2.2 when different integration methods are

employed.

" The effect the number of subintervals has on convergence of the

parallel shooting algorithm presented in Section 2.3.

" The convergence properties of the adaptive mesh selection algo-

rithi described in Section 3.1.

To begin this study, recall from Section 3.3 that the Van

der Pol system may be written as follows:

k1(t) = x2(t) (5.1-1)

(t)= a(t) [1 - xY(t)] x 2 (t) - xW(t) + u(t) (5.1-2)

where x(0) = x is known, a(t) is a parameter which reflects a par-

ticular system's dynamics, and u(t) is a control variable.

The problem considered in this section is to obtain the

optimal control, u(t), which minimizes the cost functional:

=f [xl(t) + x2(t) + u2(t)] dt (5.1-3)
0
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subject to the satisfaction of eqns. (5.1-1) and (5.1-2). From the

necessary conditions of optimality given in Section 2.3, it is easy

to show that the nonlinear two-point boundary value problem (NTPBVP)

associated with the Van der Pol system is given by:

State Equations

1 (t)= x 2(t) (5.1-4)

i2(t) = a(t) El - x 2 (t)] x (t) - x (t) + u(t) (5.1-5)
2 1 2 1

Costate Equations

1f(t)= x2 (t) [2 a(t) x1 (t) x2 (t) + 1]

- 2 x (t) (5.1-6)

(t) =l(t)- 2(t) a(t) [i - x 2(t)]

2 1 21

- 2 x 2(t) (5.1-7)

Boundary Conditions

Tx(O) = Exlo0, x 201T  (5.1-8a)

X(5) = [0, o]T  (5.1-8b)

Optimal Control

u(t) =- 2(t) (5.1-9)

If ordinary shooting is used to solve the NTPBVP above, then

an appropriate error function which must be minimized is simply:

E = IX(5)112 (5.1-l0)

To demonstrate the effectiveness of ordinary shooting and the
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parallel algorithms developed in Chapters wo an Three, these

methods were used to determine the initial costate which causes eqn.

(5.1-10) to be minimized, given that

a(t) 1 V t F [0, 5]

and

x(o) = [o 1] T

The initial costate vector was chosen as X(0) = [0.5 5.0]T

which caused the forward integration of eqns.(5.1-4), (5.1-5), 5.1-6)

and (5.1-7) to be well defined. As a result, the NTPBVP could be

easily solved for the optimal unconstrained control which is shown in

Figure 5.1.

In many instances, due to physical constraints, the optimal

control may be bounded. To accommodate problems of this type, the

bounded control algorithm described in Section 2.3 can be employed.

To demonstrate the effectiveness of this procedure, the optimal con-

trol problem above was solved assuming iu(t)T < 0.8 V t E [0, 5].

The optimal bounded control for this example is shown in Figure 5.1.

The ability of the parallel initial costate algorithm to re-

duce the error function defined by eqn (5.1-10) is shown in Tables

5.1-5.4. Since the parallel algorithms were simulated on an IBM 3033

(a serial computer), the total number of function and gradient evalua-

tions shown in Tables 5.1-5.4 reflect the fact that an advanced com-

puter with n = 2 or n + 1 = 3 levels of parallelism should be used to

execute the Chazan-Miranker method or Straeter's method, respectively.

The results indicate:
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" For initial values of X(t ) close to optimum, the Chazan-Miranker0

procedure is capable of speeding up convergence by nearly a factor

of two over the DFP and ZP methods. Sraeter's method is much more

effective than the DFP method in reducing the error function for

about the same number of function and gradient evaluations (Table 5.1).

" For initial values of X(t ) far from optimal, the parallel algo-0

rithms are capable of reducing the error function by several orders

of magnitude compared with the DFP method. Although the ZP method

managed to reduce the error function the most, this was achieved at

the expense of many function evaluations (Table 5.2).

" When the control is constrained (iu(t)I < 0.8) and the initial value

of X(t0 ) is selected near the optimum, all procedures converged.

Note that the ZP method required a relatively large number of func-

tion evaluations to do so however (Table 5.3).

* If u(t) is constrained, Straeter's method is clearly superior to the

DFP method when )(t ) is initially far from optimal. Observe that

although the CM method required many function evaluations, conver-

gence did result, whereas the ZP method failed to locate the minimum

in this case (Table 5.4).

5.1.1 Robustness of Parallel Minimization Algorithms

To study the robustness of the parallel minimization algo-

rithms and the effect different integration schemes have on convergence,

ordinary shooting was used to solve the NTPBVP represented by eqns.
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(5.l-s) - (5.1-8). As in the previous example, the error function

which must be minimized is E = IIX(5)1 2 . The methods used to inte-

grate eqns.(5.1-h) - (5.1-7) forward in time were the Adam's predictor-

corrector (APC) pair given by eqns. (4.2.2-7), (h.2.2-8), the parallel

predictor-corrector (PPC42) pair given by eqns. (3.2.1-4a), (3.2.l-4b),

and the parallel predictor-corrector variable step size (PPC42V)

method, discussed in Section 3.2.2.

Because of the expense incurred when simulating the parallel

algorithms, only two of the parallel minimization methods were con-

sidered; namely the CM and PVM algorithms. As shown in Section 3.1.3,

the rate of convergence of this the PVM algorithm depends primarily

on a weighting parameter which defines a set of linearly independent

vectors denoted by:

Z ( a, o21 "'' a) c In

where

I is a n x n identity matrix and

c is a scalar weighting parameter which is fixed for all

iterations.

By varying the weighting parameter over a large range (say 10-9 < c

0- ) the robustness of the PVM method can be evaluated. Also,

integration effects can be measured by using one of the integration

methods cited earlier. Because the APC and PPC42 integration methods

are fixed step size procedures, the step size must be selected a priori.

Since the step size, h, must be sufficiently small to assure accurate

results without an excessive number of integration steps, h was set

to 5/100 = 0.05. For the variable step size method (PPC42V), a 5-6
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digit accuracy requirement was requested which meant that the step

size must be varied to maintain the local truncation error below 10-5.

Initially, the integration step size was set to h =0.05, but in order

to meet the accuracy requirement imposed, the step size was immedi-

ately reduced to h = 0.025. After this initial adjustment, the step

size remained at h = 0.025 for the remainder of the integration inter-

val.

At this point, simulations were performed to determine the

convergence properties of the indirect control algorithm when the

integration methods described above are employed. The results are

summarized in Figure 5.2.

The results indicate:

" The robustness of the PVM algorithm is enhanced the most when the

PPCI42 integration scheme is employed, i.e., for a wide range of c

(10-7 < c < 10-3), the performance of the PVM algorithm is insensi-

tive to the specific value of the weighting parameter.

" The parallel integration methods enhance the robustness of the PVM

algorithm- more than the serial APC method; although the PVYM method

could be tuned to converge the fastest when the APC method was

employed (see Figure 5.2).

Before leaving this section, a few words should be said

about the robustness of~ the Chazan-Miranker (CM) algorithm. To use

the CM algorithm, a monotone decreasing sequence must be selected. In

optimal control applications, it has been determined empirically that

a reasonable choice of the monotone decreasing sequence is:
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I
2. = c exp (-2)

where

c is a weighting parameter and k denotes the iteration

number.

In the context of the CM method, the term robustness refers

to the relative insensitivity of the method to the particular value of

c. By varying the weighting parameter c over a wide range, say 10 < c

-2
< 10 the robustness of the CM method can be measured. To this

effect, the CM method was used with PPC integration to solve the

NTPBVP associated with the Van der Pol system. The results obtained

are shown in Figure 5.3.

The results indicate that the CM algorithm was not very robust

at all. In fact, if the weightirg parameter was greater than 10, the

CM method didn't ccnverge because the excessively large value of c

caused the forward integration of eqns. (5.1-4) - (5.1-7) to become

unstable. In view of these undesirable results, no further simulations

were considered.

5.1.2 Parallel Shooting

In this section, the convergence of the parallel shooting

algorithm presented in Section 2.3 will bc tudied by dividing the

mission time interval into many subintervals and determining if con-

vergence may be accelerated or not. Recall from Chapter Two that as

more subintervals are introduced, the original NTPBVP becomes a multi-

point boundary value problem and the number of unknown boundary condi-

tions increase from 2n to n(2N-l) where n is the system order, and

N is the number of subintervals. Despite this fact, the major advantage

137



0

E

-0 0~

CD

-1

0.

0 0 0 0
Nn c -

98DU~bJ9AUOO .10; psajinbe~j
suoi~oj8j4 40 .jgqwfN 1D00-

138



of using parallel shooting is that the sensitivity problems associated

with the forward integration of the state and costate equations is sig-

nificantly reduced.

In view of the above, a natural question then is "How should

N be chosen?" Although the parallel shooting method has been known

for a number of years, the question raised here has not been answered

satisfactorily.

One way to answer the above question, which is the approach

taken here, is to select a value of N, solve the resultant multipoint

boundary value problem using parallel shooting, and record the number

of iterations required for convergence as a function of N. To deter-

mine if this procedure would indeed provide some insight into how to

choose the number of subintervals, the mission time interval was

divided into 2, 3, and 5 subintervals and the parallel shooting algo-

rithm discussed in Section 2.3 was employed to solve the resultant

multi-point boundary value problem. To illustrate the procedure, the

two subinterval case will be briefly described.

For the two subinterval case, the mission time interval

[0, 5] was arbitrarily partitioned into two subintervals of length

A1 = 1.6 and A2 = 3.4. Note that the sum of A and A is equal to the
1 2

length of the mission time interval since this is a necessary con-

straint. The "reduced" error function which must be minimized subject

to the dynamic constraints given by eqns (5.1-4) to (5.1-7) is given

by:*

Since x(t) = x0 is known, there is no need to include it in Y£.

Observe that this reduces the number of unknowns in Y by a factor of n.
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E = + QYr - 'H2  (5.1.2-1)

where

0000 oooo lO
0 0,0 0 0 0 0 0 0 0 0 1

P 00 1 0 00 Q -l 0 0 0 0 0

00 0 1 0 0 0-10 0 0 0

0010 0 10 0 0-10 0 0
00I0 00 1 0 0 0-1: 00

Yt = [X (0) x 2(0) x1 (.6) x2(1.6) x1 (1.6) 2(1.6)]T

Yr = ExI (1 .6 ) x2 (1.6) 21(1.6) x2(1.6) xi(5.0) X2(5.0)] T

and

T
x= 1 (5.0) X2 (5.0) 0 0 0 C]

To start the parallel shooting method, Yk was initially set

to a zero vector but upon convergence Y was determined to be:

Yk = (0.h30!9 5.1156 0.3189 -0.2012 1.871 -0.7814)T

Since the goal of this section is to determine how to choose

the number of subintervals, the above procedure was repeated by dividing

the mission time into three subintervals of length, A, = 1.0, A = 1.0,
1 2

and L = 3.0, and then into five subintervals of length, A, = A = A 3

L = A 5 = 1.0. Observe that, in each case the constraint that the sum

of the subinterval lengths must be equal to the mission time was

imposed at all times. Finally, to be consistent with the two subinter-

val case, Y was initially set to zero for both the three and five sub-

interval cases.

To this effect, the simulations were performed. The results

shown in Figure 5.L indicate:
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" The integration interval should be partitioned into as few as

possible subintervals since the number of iterations required for

convergence, as well as the number of unknowns, will be reduced

(see Figure 5.4).

" The number of iterations required for convergence appears to in-

crease linearly with the number of subintervals for the DFP/PPC42

method while for the PVM/PPC42 method, the number of iterations

required for convergence tends to level off as the number of sub-

intervals is increased.

The last observation may be directly related to the accuracy

of the solution to the initial-value problems over each subinterval.

As the number of subintervals increase, the step size employed by the

PPC42 integration method decreases because the number of integration

steps taken over a given subinterval was held fixed. As a result, a

more accurate integration of the appropriate differential equations was

obtained over each subinterval. Thus, the gradients required by the

PVM and DFP methods were obtained more accurately as the number of

subintervals was increased. But since the PVM algorithm is known to

perform better when accurate gradients are utilized, this may explain

why the niunber of iterations required by the PVM/PPC42 method does not

increase very rapidly. On the other hand, since the performance of

the DFP method is generally not affected very much by inaccurate gra-

dient information, this may explain the linear trend shown in Figure

5.4 for the DFP/PPCh2 method.

It is instructive to note that the dimension of Y in each

142



case was n(2N - 1). Since n = 4, this implies that 6, 10, and 18

unknowns must be found when 2, 3, and 5 subintervals were used re-

spectively. Since the parallel algorithm converged in all cases,

this indicates that this method may be employed to solve high order

optimization problems.

Finally, it should be noted that the results obtained in

this section are not very meaningful as is,because no insight has been

gained as to where the mesh points should be placed. However, if the

number of subintervals has been specified, then the adaptive mesh

selection algorithm discussed in Section 2.2.2.1can beutilizedtoallo-

cate the mesh points in an optimal fashion. An example illustrating

the use of the adaptive mesh selection algorithm is presented in the

next section.

5.1.3 Adaptive Mesh Selection

In this section, the adaptive mesh selection (AMS) algorithm

described in Section 2.2.2.1 will be employed to optimize the mesh

points required by the parallel shooting algorihm. In v.ew of the results

obtained in the previous section, the mission time interval [0, 5] was

divided into only two subintervals. Hence, the problem was to simulta-

neously find the optimal values of the subinterval lengths (\1 and A2

and the solution to the resulting multi-point boundary value problem

subject to the dynamic constraints given by eqns.(5.1-4) to (5.1-8),

as well as the static constraints, A1 > 0, A2 > 0, and A1 + A2 
= 5.

To use the AMS algorithm, one must decide which numerical

integration method to use because the Jocal truncation error associated

with the integration method selected is required. Since the parallel

predictor-corrector (PPC) method given by eqn.( 3.2.1-ha) and (3.2.l-hb)
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is accurate to 0(h ), this method was selected to integrate the re-

quired initial-value problems.

To illustrate the use of the AMS algorithm, consider the

NTPBVP represented by eqns.(5.1-4) - (5.1-8) and the error function

below:

E = + Qr - Y11 2 + lle,12 (5.1.3-1)

where

0 0 0 0 0 0 0 0 0 0 1 0
000000 0 0 0 0 1

0 0 1 0 0 0 -1 0 0 0 0 0

P= 0 0 0 1 00 Q= 0 -1 0 0 0 0
0 0 0 0 1 0 0 0 -1 0 0 0
0 0 0 0 0 1 0 0 0 -1 0 0

Y= [k(0 X2 (0) xl(AI ) x2 (AI ) )XI(A1 ) X2 (A2 ) gl]T

Yr = [X (A) x 2(A) x (A) x2(A) X (5.0) X2(5
" ) T

Yr = x1(L1 x2(L1 1L1 2(L1 x1(50 (-)]

and

T
y = [X1 (5.0) X2 (5.0) 0 0 0 0]

The first term shown in eqn (5.1.3-1) is the usual error function

associated with the parallel shooting method while the second term is

included to allow the mesh points to be optimized. For the problem

under consideration, the error vector, e, has two components, namely:

ej+l = max eL(t) J = 0, 1 (5.1.3-2)
maxmx tj L t < t j+1L

where e L(t) is the local truncation error associated with the PPC42

integration method. Recall from Section 3.2.2 that the norm of e L(t)

was derived to be:
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Ty_

leL(t)l 21 ( - + h fcI) (5.1.3-3)251 lp

where in this case y = (x1  x 2  X 1 and f consists of the right-

hand side (RHS) of il, x2 9 1 and A2 "

In view of the above problem formulation, the parallel algo-

rithms discussed in Chapter Three were used to minimize eqn.(5.1.3-1)

subject to the djnamic constraints given eqns.(5.1-h) - (5.1-8) and

the static constraint AI > 0, A > 0, and A + L2 = 5. Based upon
1 21 A2  5.Bsduo

previously obtained solutions, Y was initially selected as:

Y= (o.4 5.0 0.25 -0.2 1.4 -0.9 2.5)

which resulted in an initial error function value of E = 0.9157 and

I ell = 0.01004. Based upon the definition of E, these values indi-

cate that initially most of the error was due to the choice of x and

X at the partition points rather than the choice of the partition

points themselves. To reduce E, the DFP was used in conjunction with

the PPC42 integration method. After ten iterations, the following

values of Y., E and Hell were obtained.

Y (0.4192 5.1201 0.1505 -0.2093 0.9562 -0.8581 2.334)

E = 0.0093 and Hlell = 0.00929

Observe that these results indicate that the error in the solution at

the partition points is only 0.0093 - 0.00929 = 0.00001 and that the

norm of the local truncation error, ilell, dominates over the solution

error. Also, note that after ten iterations, the subinterval lengths

had converged to A1 = 0.2334 and A2 = 5 - A1 = 4.7666.

To determine if the local truncation error could be reduced

still further, the AMS algorithm was allowed to execute for a total

of 50 iterations. After 50 iterations, the norm of the local truncation
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error had been reduced to e I = 0.007402 while the total error was E =

0.007724. .7ote that e j had been reduced by about 23% from its initial

value of 0.01004 which is encouraging. The value of Y obtained after

50 iterations was:

Y= (0.3285 5.0683 0.3354 -0.2084 2.0047 -0.7364 1.4378)

which indicates that the subinterval lengths should be selected as

A1 = 1.4378 and A2 = 3.5622.

In summary, it can be concluded from the results presented

in this section that by using the AMS algorithm to optimally select

the mesh points required by the parallel shooting algorithm, the local

truncation error can indeed be minimized, although many iterations

may be required. Observe, if the integration interval 10, 5] is

divided into two subintervals of lengths A1 = 1.6 and A = 3.4 and if
1 2

the parallel shooting algorithm is used, then it was shown in the

previous section that the optimal value of Y is given by:

Y = (0.43019 5.1156 0.3189 -0.2012 1.871 -0.7814)T

In this case, the norm of the local truncation errjr, 1hell, is jjeV'

= 0.00814 which is nearly 8% greater than the error obtained using

the adaptive mesh selection algorithm.

5.2 Evaluation of Estimator Performance

The performance of the parallel state and parameter estima-

tion algorithms was evaluated using simulated measurement data charac-

terizing the lateral motion of a T-33 aircraft. The equations of

motion used in the simulations were given by [42]:
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Y a 0  -1 0.05467
0 a 6a

p ra
L(t) = 

x(t) + L a 6a(t) (5.2-1)

N N P N r 0 a 6
NB Np Nr N

0 1 0 0 0

where the state variables xl(t), x2 (t), x3 (t), and x4(t) represent the

sideslip angle, roll rate, yaw rate and roll angle respectively. The

aileron deflection angle,6a, was selected as a one degree step command

for the purposes of identification.

The measurement model used in the simulation was selected

as:

z(t) = x(t) + v(t) (5.2-2)

where v(t) is a zero-mean WGN process with covariance

.oo4 0 0 0

o 4.o 0 0
Q(t)

0 0 .017 0

0 0 0 3.4

Tnis value of Q(t) was selected since a ratio of signal

variance to noise variance of approximately two was desired.

The objective was to simultaneously estimate the four state

variables and the aerodyanmic parameter vector

( = (YB' aO' LB' ' ,Lr' NB N0  N r Y6 a L6 , N6 )T

a a a

However, to identify all of the aerodynamic parameters would be imprac-

tical since the computational cost would be too high. Therefore, a

sensitivity study was conducted to determine those parameters which
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most affect system perfornvnae and therefore are most important to

explicitly identify. More specifically, the state sensitivities:

9 x.(t)

LAxi 01(= jt) A C(t) i = l, 2, 3, 4 (5.2-3)

j =l, 2, ..., ll

were calculated and displayed to aid the decision process (see Figure

5.5). From Figure 5.5, it can be concluded that a, L, L and 1 a
a a

are the most important parameters to identify since the state sensi-

tivities associated with these parameters are much larger in magnitude

than the remaining parameters. Therefore, the remaining parameters can

be considered less important and set to their nominal values. Thus, we

shall be concerned with solving the reduced SAP estimation problem in

the remainder of this section.

5.2.1 Direct SAP Estimation

To find the unknown states and parameters associated with

the T-33 aircraft, the following performance index was considered:

J II2(o) - m !12-1 + 1 Ilz(t) - x(t)l -i2 dt (5.2.1-1)
o0 Pxo 0

Q(t)

where

m = (0 0 0 0 0.142 -6.51 -h4. -1.8)T

0

and

Px= 0.01 18*

The parallel algorithms discussed in Chapters Two and Three

were employed to find i(O) which minimizes eqn.(5.2.1-1) subject to

eqn (5.2-1). To start the algorithm, the estimate of the augmented

state vector was selected to be i(O) 0 which resulted in an initial

performance of J = 1.008 x 106.
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As indicated in Table 5.5, the parallel SAP estimation

algorithm managed to reduce the performance index more rapidly than

the serial DFP algorithm. In fact, the results in Table 5.5 indicate

that the serial DFP method did not converge after eight iterations

while the parallel method converged after seven iterations. Upon

convergence of the PVM method, the initial state and parameter esti-

mates compare very favorably with the true values which were

x! =0., x2 = 0., x = 0., x4 = 0.

a0 = 0.142, L. -6.51, L -4.hh and N = 1.8.
a a

Using the estimated initial state and parameter vector, a simulation

of the T-33 aircraft was performed. The resulting trajectories along

with the simulated measurement data are shown in Figures (5.6-5.9).

Note that the estimated roll rate and roll angle trajectories are

essentially indistinguishable from the true trajectories while there

is only a small error associated with the sideslip and yaw rate tra-

jectories (see Figures 5.6 - 5.9).

5.2.2 Indirect SAP Estimation

To assess the performance of the indirect SAP estimation

algorithm discussed in Section 2.1.1, it was used to find the unknown

states and parameters of the T-33 aircraft. To use the indirect

method, the SAP estimation problem defined by:

J RI(t) _m II2_ 1  + f f (IIz(t)
0 Pxo t

h5 2 1 2 -t-h [x(t), ti11 Q -  (t) + '' (t)1l (t))
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FIGURE 5.6: Sideslip Angle Estimation
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FIGURE 5.7: Roll Rate Estimation
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and i(t) = f [x(t), t] + G[x(t), t] Y(t)

must be reduced to a nonlinear two-point boundary value problem

(NTPBVP). Using eqns. (2.1.2-2), (2.1.2-3), (2.1.2-4) it is easy to

show that the NTPBVP associated with the T-33 aircraft is given by:

x(t) = a x(t) + b 6 (5.2.2-1)a

i(t) = R-l(t) (z(t) -ax(t)) - aT(t) X(t) (5.2.2-2)

where

Y aO -1 0.05467 Y 6
a

L L L 0 6
a =0 and b a

N N N 0 N6r 6

o 1 0 0 0
- - - - - - - -- - - - - - - - -

0 4 .0

The boundary conditions associated with eqns. (5.2.2-1) and

(5.2.2-2) are:

X(-) [1 ER(o) -m m (5.2.2-3a)
0

x(l) = 0

In the problem formulation above, the augmented state vector, x(t),

includes the unknown parameters a0, Lp, L6 , and N8
a a

To solve the NTPBVP represented by eqns. (5.2.2-1), (5.2.2-2)

(5.2.2-3a) and (5.2.2-3b), ordinary shooting was used initially. How-

ever, due to the sensitivity of the costate eqn.(5.2.2-2) to small

changes in i(0),convergence was rather slow.

On the basis of these results, it was decided that parallel
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shooting should be considered. Thus, the integration interval [0, 1]

was partitioned into two subintervals (A1 = 0.4 and A2 = 0.6) and

the parallel shooting algorithm discussed in Section 2.1.2 was employed

to minimize the reduced error function:*

E = I fk + QYr - 1(I2  (5.2.2-4)

where L 080
8l 086 86 8

P= Q= f1

YZ = [2T( 0 ) xT(0.4) xT(0.4)]T

y= [XT(0.4) xT(0.4) T (1.)] T

and

y=0

Note that by using parallel shooting, the dimension of the

problem is artificially increased from 2n = 16 to n(2N - 1) = 2L.

Although the problem now appears more formidable to solve, this is not

the case because the sensitivity of the solution to the selection of

(0) should be reduced which might help convergence.

In fact, the results shown in Tables 5.6 and 5.7 indicate

that convergence can occur using parallel shooting; however, the

number of iterations required still was rather large. Note that the

Since X(o) = -i [1(0) - m] is known once R(0) is given, there is

no need to include it in Y .. Observe that this reduces the number of

unknowns in Y by a factor of n.
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results shown in Tables 5.6 and 5.7 clearly indicate that the gradient

dependent DFP algorithm is preferable to the nongradient ZP method.*

5.2.3 Timing Considerations

In Section 4.2, the execution time of the parallel (and

serial) algorithms was estimated in terms of variables representing

the number of additions, multiplications, function and gradient evalu-

ations. In this section, these results are employed to estimate the

time required to simultaneously estimate the state and parameters of

the T-33 aircraft's equations of motion. Although this can be done

using any of the timing equations given in Section 4.3, the timing

results will be explicitly calculated assuming the PVM minimization

method and the fourth-order PPC integration method are used in the

direct SAP estimation algorithm given in Section 2.1.

For the T-33 aircraft, 10 additions and 13 multiplications

must be performed when evaluating the RHS of the aircraft's equations

of motion. Also, suppose the parallel predictor-corrector (PPC42)

method requires 100 integration steps to integrate the appropriate

differential equations over the integration interval [0, 1]. By sub-

stituting Arh s = 10, Mrh s = 13 and N = 100 into eqn.(4.2.2-5), an

estimate of the time required for one function evaluation can be

obtained as follows:

tfe = 1400 A t + 1800 M t (5.2.3-1)fea m

If the direct state and parameter (SAP) estimation procedure is

* The parallel minimization algorithms were not considered here due to

the enormous expense which would be incurred when simulating these

methods on a serial computer.
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utilized, then n = 8 and the execution time for one gradient evalua-

tion is:

t n t 11,200 A t + 1 4 ,4 00 M t (5.2.3-2)
ge fe a

From Table 5.5, four function evaluations are performed during a line

search on the average. Hence, let L = 4. By substituting eqns.

(5.2.3-1) and (5.2.3-2) into eqn.(4.2.1-5), an estimate of the execu-

tion time for one iteration of Straeter's PVM algorithm may be

obtained as follows:

tpi = 23,638 M tm + 18,443 A ta (5.2.3-3)

To illustrate the speed achievable through parallelism,

suppose the processor add and multiply tines are t = 200 nsec anda

tm = 1000 nsec , respectively. By substituting these values of ta

and tm into eqn.(5.2.3-3), the execution time per iteration is only

0.0273 seconds. Note that this time may be reduced still further if

the PPCh2 integration method is used to integrate each state equation

on separate processors. In particular, if 16 processors (two for

each state equetion) were available, the function and gradient evalua-

ticn time would be reduced to:

tfe = 175 A t + 225 M t (5.2.3-4)

and

t = lh00 A t + 1800 M t (5.2.3-5)ge a m(523)

By substituting eqns. (5.2.3-4) and (5.2.3-5) into eqn.(4.2.1-5), the

estimated execution time for one iteration of the PVM algorithm would

be reduced to 0.0036 seconds.

By using the timing equations derived in Section 4.2, and
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the procedure described above, the execution time of many other algo-

rithms may be estimated. To provide a basis for comparison, this was

done for both direct and indirect SAP estimation Irocedures and the

results are shown in Tables 5.8 and 5.9.

The results indicate:

" The execution time per iteration can be significantly reduced if

a completely parallel (i.e., parallel minimization and parallel

integration) algorithm is used.

" One iteration of the nongradient algorithms require less time to

execute compared with the gradient-dependent methods.

" One iteration of the indirect method requires much more time and

processors to execute compared with the direct method (see Tables

5.8 and 5.9).

Finally, the speed-up due to parallelism is illustrated in

Figure 5.10 which iliustrates the speec-up/iteratiou as a function of

processors.

5.3 Evaluation of Controller Performance

The performance of the parallel nonlinear control algo-

rithms presented in Section 2.2 was evaluated by designing a control

system for controlling the longitudinal motion of an F-8 Crusader

aircraft. The longitudinal equations of motion of the F-8 aircraft

were obtained from the aircraft model shown in Figure 5.11. The

aircraft model illustrates the forces which were considered and the

coordinate system used by Garrard and Jordan in reference [43].
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It is assured that the aerodynamic drag is negligible

and that the lift may be separated into its wing and tail components.

Under these conditions, it can be shown (cf. [43]) that the longi-

tudinal equations of motion become:

m(d + w 0) = -mg sin 0 + w sin Q + Lt 'in at (5.3-1)

m(+u)) = mgcos - cos a - Lt cos at  (5.3-2)

I 0 M w + £ Lw cos a - i Lt cos at - c (5.3-3)

where

m = mass of aircraft

u velocity of aircraft in X direction

w = velocity of aircraft in Z direction

0 angular displacement about Y axis, measured clockwise
from the horizon as shown in Figure 5.11

I = moment of inertia of aircraft about Y axis

y

L w wing lift

Lt = tail lift

C= wing angle of attack

at  tail angle of attack

M = wing moment
w

= distance between wing aerodynamic center and aircraft
center of gravity

it = distance between tail aerodynamic center and aircraft
center of gravity

c(= damping moment.

In reference [ h , Garrard and Jordan reduce eqns.(5.3-1) -

(5.3-3) to a nonlinear dynamical model in which cubic and lower order

terms are retained for the F-8 aircraft. This model of the F-8 aircraft
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which is given below can be used to study the effect disturbances have

on the F-8 aircraft when it is perturbed from level, unaccelerated

flight at Mach = 0.85 and an altitude of 30,000 feet.

For small angle of attack disturbances (cL < 23.50 = 0.41

radians), the F-8 aircraft model is given by:

= ( - 0.088 x) x- 0.877 x o..7x2

+ 3.846 3 0.215 u + 0.28 u x 2 + 0.47 u 2 x
1 1

+ 0.63 u3 - 0.019 x 2 (5.3-4)
2

x2 = x3  (5.3-5)

3 = -0.396 x - 4.208 x - 0.47 x2 - 3-564 x3
x3  3 1 1 1

-20.967 u + 6.265 u x2 2 46 u x + 61. (5.3-6)
i 4 1.1 536

while for large angle of attack disturbances (c > 23.5 = 0.41

radians) the F-8 aircraft model becomes:

= (1 - X2 - 0.088 x9) x 0.19 x - 0.053 x
1 132 1

+ 0.006 x2 0.049 x3- 0.215 u + 0.28 u
1 1 1

+ 0.47 u 2 x + 0.63 u 3  (5.3-)

x 2 = 3  (5.3-8)

i = -0.396 x - 5.116 x - 0.042 x - 0.32 x
3 u

- 20.967 u + 6.265 u x2 + 46 u x + 61.4 u3  (5.3-9)

The state variables, x,, x2, and x3, represent the angle

of attack, pitch angle, and pitch rate, respectively. The tail de-

flection angle, u, is the control variable which must be designed to

reduce an angle of attack distrubance as rapidly as possible.

In the remainder of this section, an open loop and a closed

loop controller will be designed and evaluated using the procedures
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discussed in Chapter Two. Also, the computation time required by the

control synthesis algorithms will be estimated.

5.3.1 Open and Closed Loop Control Synthesis

In this section, an open loop controller is designed by

solving a nonlinear two-point boundary value problem (NTPBVP) asso-

ciated with the F-8 aircraft's longitudinal equations of motion. Also

in this section, two closed loop controllers are designed. The first

using linear quadratic regulator (LQR) theory and the second using the

direct gain optimization algorithm described in Section 2.2.2. The

controllers are designed assuming the angle of attack remains below

23.50 so that the low angle of attack model given by eqns. (5.3-4),

(5.3-5) and (5.3-6) could be used.

Linear Controller Synthesis

To use LQR theory to design a controller for the F-8 air-

craft, the equations of motion must be linearized. Linearizing eqns.

(5.3-h), (5.3-5), and (5.3-6) results in the following linear model

of the F-8 aircraft:

x(t) 0. 0. _0 x(t) + 0. u(t) )3ii

-208 0. -0396 -20-9T6

x(t) = A x(t) + b u(t) (5.3.1-2)

The _-4 mal control must be determined to minimize the quadratic per-

f t) + r u(t) 2 dt (5.3.1-3)



subject to the dynamic constraint given by eqn.(5.3.1-2). From

LQR theory, it is well known that the optimal control is given by [ 44]

u(t) = -r b P x(t) (5.3.1-4)

where P is the positive definite solution of the steady state matrix

Riccati equation

ATP + PA - Pbr -1 bTp + Q = 0. (5.3.1-5)

The Q matrix and the scalar r were selected as

F0.25 0. 0
Q 0 0.25 0. and r 1.0

0 0.251

since this choice of Q and r gave good response without exceeding a

maximum tail deflection of 25° (0.4363 radians) and a tail deflection

rate of 60°/sec (l.b472 radians/sec). The crtimal control problem

above was solved using ORACLS - a collection of optimal regulator algo-

rithms for the control of linear systems [Lv].

The resultant control law was determined to be:

u(t) = -0.053 x I(t) + 0.5 x2 (t' + C.521 x (t) t > 0

(5.-3.-7'

To determine if a "better" controller could be designed by

utilizing the nonlinear equations of motion of the F-B aircraft di-

rectly, the direct gain optimization procedure discussed in Section

2.2.2 was employed. Since we want the controller to be linear and

utilize feedback, the controller is constrained to be of the form:

u(t) = 1 xI(t) + K2 x 2 (t) + K3  3 (t) t > 0 (5.3.1-8)
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II

where K1, K2, and K are constant gains which must be determined.
21 3

The optimization problem, in this case, is to find the

control gains which minimize the performance index:

S= "' [xT(t) Q x(t) + r u2 (t )] dt (5.3.1-9)

subject to the nonlinear equations of motion given by eqns. (5.3-4),

(5.3-5), and (5.3-6). The matrix Q and the scalar r were selected to

be the sane as in the LQR design.

At this point, the direct gain optimization procedure could

be used to find the optimal values of KI , K2 , and K3 needed to define

the control. Initially, K1, K2 , and K3 were set to zero and updated

by the Davidon-Fletcher-Powell (DFP) method until the performance index

(5.3.1-9) was minimized. After twenty iterations of the direct gain

optimization procedure, the gains had converged to their optimal values

which when substituted into eqn (5.3.1-8) yields:

u(t) = 0.1368 x_(t) + 0.4331 x2 (t) + 0.6797 x (t) t > 0
2 3

(5.3.1-10)

Nonlinear Controller Synthesis

To determine how well the linear feedback controllers de-

fined by eqns 5.3.1-8) and (5.3.1-10) approximate the optimal control,

the calculus of variations approach was considered. In this case, the

problem is to find an open loop control which minimizes eqn. (5.3.1-9)

subject to the satisfaction of eqns.(5.3-4) - (5.3-6). Recall that,

when the calculus of variations is used to solve an optimal control

problem, it is necessary to solve a nonlinear two-point boundary value

problem (NTPBVP). In this case, the NTPBVP which must be solved is
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easily shown to be:

State Equations:

xi : (1 - x- 0.088 xI) x3 - 0.877 x+ 0.47 xi

* 3.846 x3  0.215 u + 0.28 u x12 + 0.47 u2 x1

*0.63 u3 - 0.019 x2 (5.3.1-11)

= (5.3.1-12)3

= -0.396 x 4.208 x - 0.47 x2 - 3.564 x3

3 1 1 1
2 2

- 20.967 u + 6.265 u x! + 46. u x! + 61.4 u (5.3.1-13)

Costate Equations:

=-0.25 xI + X1 (2.x1 x3 + 0.088 x3 + 0.877

- 0.94 x I - 11.538 x 2 0.56 u x- 0.47 u2)

* 3 (4.208 + 0.56 xI + 10.692 x1 12-53
2

* 46.2 (5.3.1-14)

-C.25 x2  0.038 l x( 5.3.1-15)'2 1 2
= -0.25 x. - X ( -1 0.088 x )  x2

+ 0.396 x (5.3.1-16)

Boundary Conditions:L.3i K0
x(O) = x (0) 0

Let the Hamiltonian be defined as:

H(x, u, X, t) : [.25(x 2 + x3) + u2]+ Xl

+2 x2. + X3 k3 (5.3.1-17)

Then the optimal control must satisfy the necessary condition:
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Hu  
2

= (1.89 X + 184.2 X3 ) U + (1.0 + 0.94 x 1

+ 92. x I X3 ) u + X l (0.28 x 
2 - 0.215) + X (6.265 x2

~1 3 1 1 31

- 20.967) = 0 (5.3.1-18)

If we let

A = 1.89 XI + 184.2 X3

B = 1.0 + 0.94 x1 X + 92. xi X3

and

C = X (0.28 x - 0.215) + X (6.265 x - 20.967),

then the necessary condition becomes:

Au2 +B u + C = 0

which implies that the optimal control, u, is given by:

u B + /32 _ 4 AC (5.3.1-19)

From the optimal control theory, it is well known that a

sufficient condition for optimality is H > 0. Thus,uu

H = 2 A u + B > 0 (5.3.1-20)

uu

Substituting eqn.(5.3.1-19) into eon. (5.3.1-20), we have

2 A u + E = + BT 4 C

which is positive only if the positive square root is used. Therefore,

the optimal control is given by:

-B + B 2 - AC
S2A

Note that the optimal control is relatively complex to imple-

ment due to the square root operation required. Furthermore, to imple-

ment this controller, the solution to the NTPBVP must be known a priori
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in order to evaluate A, B and C. Observe that this is not an easy

task because as the initial costate is adjusted from iteration to iter-

ation, the term B - AC may become negative, in which case the

optimal control is undefined. Unfortunately, this occurred when

numerical methods were applied to this problem.

One way to overcome this difficulty is to use the approach

taken by Garrard and Jordon [431] who approximated eqns.(5.3-4),
3 2

(5.3-5), and (5.3-6) by eliminating the u3 , u and cross product terms.

In this case, the approximate eiuations of motion which are valid for

low angles of attack are simply:

2 _2l= 1 - x1 - 0.088 x - 0.877 xI + o.47 x

+ 3.846 x13 0.019 x2 - 0.215 u (5.3.1-22)

2= x3 (5.3.1-23)

3 = - 0.396 x- 4 208 x- 0.47 x - 3.564 x3

- 20.967 u (5.3.1-24)

If this model of the F-8 airciaft is employed in the design of the

open loop controller, the costate equations and control are given by:

Costate Equations:

i I = -0.25 xI1 + 1 (2"xXl x3 +  0.088 x 3  + 0.877 - o.94 x11 x1  X1

- 11.538 x12) + ?3 (4.208 + 0.56 x1 + 10.692 x
2

(5.3.1-25)

2 = -0.25 x2 + 0.038 X1 x2  (5.3.1-26)

x= - - 1 - x - 0.088 xI ) - + 0.396 X

(5.3.1-27)
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Optimal Control:

u = 0.215 Xl + 20.967 X3  (5.3.1-28)

Note that in this case the optimal control (for the approxi-

mate F-8 model) is extremely simple to compute provided X and X 3 are

known. These quantities were obtained rather easily by solving the

NTPBVP represented by eqns.(5.3.1-22) - (5.3.1-28). This was achieved

by incorporating the serial DFP minimization algorithm and the APC

integration method into the indirect control algorithm described in Sec-
,

tion 2.2.2.1. The resulting solution is, of course, optimal for the

approximate F-8 model and is shown along with the LQR control and

closed loop control designed using the direct gain optimization proce-

dure in Figures 5.12 - 5.15. The trajectories displayed in Figures

5.12 - 5.15 indicate:

" The response of the F-8 aircraft due to the LQR control is signifi-

cantly different from that due to the open and closed loop controls.

This may be attributed to using a 14.nearized model of the F-8

aircraft in the design process.

" The response of the F-8 aircraft due to the closed loop control

designed using the low angle of attack model compares very favorably

with that due to the open loop control which is optimal for the

approximate F-8 model.

The second result, along with the fact that the closed loop

control utilizes feedback while the optimal control does not, indicates

Parallel algorithms were not considered here because only the effec-
tiveness of the resultant control was being studied not the method
used to obtain it.
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that the closed loop control may be preferable in this case. Finally,

it should be emphasized that the closed loop control was designed with-

out approximating the nonlinear equations of motion of the F-8 aircraft.

This attribute of the direct gain optimization procedure is studied

further in the next section in which a number of feedback controllers

are compared.

5.3.2 Feedback Control Laws

In this section, several feedback controllers are designed

and compared at high angles of attack. The problem of interest this

time is to determine the feedback control law u(t) = g (x(t)) which

minimizes

r5  o
J = f xT Q x + r u] dt (5.3.2-1)

-0

subject to the F-8 aircraft equations of motion given by eqns. (5.3-h)

- (5.3-9). In this example, the initial state was x = (0.575 C 0)

and the matrix and the scalar r were selected as:o.5 0. 0.l
Q K 0.25 0. and r = 1.0.

Note that both high and low angle of attack models are used in this

case.

The control problem above was originally considered by

Garrard and Jordan who used LQR and perturbation theory to design the

following flight controllers [43]:

* Linear Control

u = -0.053 x1 + 0.5 x + 0.521 x (5.3.2-2)
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" Quadratic Control

u = -0.053 x1 + 0.5 x2 + 0.521 x3 + 0.04 x1

- o.o48 x1 x2  (5.3.2-3)

* Cubic Control

u = -0.053 x + 0.5 x2 + 0.521 x3 + 0.04 x
2

- 0.048 x x2 + 0.374 x3 - 0.31 x2 X (5.3.2-4)
121 1 2

Because these designs do not account for the quadratic and cubic con-

trol terms, as well as the cross terms involving x and u appearing in

eqns.(5.3-4), (5.3-6), (5.3-7), and (5.3-9), it seems plausible that a

better controller might be designed. To show this, suppose the con-

troller is constrained to be of the form:

u(t) = 1 x1 (t) + K2 x2 (t) + K 3 x 3(t) t > 0

(5.3.2-5)

If the direct gain optimization procedure described in

Section 2.2.3 is employed, then the optimal gains (K1 , K2, and K 3 ) could

be found by initially setting them to zero and updating the values of

K1, K2 , and K31 using an iterative scheme until the performance index

(eqn. 5.3.2-1) is minimized. Tc speed computations, the parallel

integration methods discussed in Section 3.2 may be used to integrate

eqns. (5.3-4) - (5.3-9), while the selection of the next value of K1 ,

K2 , and K3 may be made using one of the parallel minimization methods

described in Section 3.1. Because the parallel numerical procedures

can account for all the nonlinearities in eons. (5.3-4), (5.3-6),

(5.3-7), and (5.3-9), the optimized control law:

u(t) = 0.138 x (t) + 0.385 x2 (t) + 0.243 x 3(t) t > 0

(5.3.2-6)
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should be superior to .ne contrci ers e :ef'rie' :. .3.2-2

. , and (5.3.2-.).

To determine if this was indeed true, a simulation of the

response of the F-8 aircraft to each feedback control law was con-

ducted and the resulting trajectories were olotted (see Figures 5.16

- 5.19). Since the objective was to reduce an angle of attack dis-

turbance to the origin as rapidly as possible, it is clear that the

controller give. by eqn.(5. .3.2-6) is indeed superior to the others.

Also of interest was a conparison cf the performance of the

rarallel and serial minimiza-tion methods discussed in Chapter Three.

ir Table 5.11, the parallel and seria! methoss are compared by count-

inr. the total numter of iterations required fcr convergence to a set of

control Rains for the F-- aircraft. Thic is appropriate because the

parallel ao s require n + - gradients t be evaluated simulta-

neously usin n + c rocessrs an-,: a unavariate search per iteration

while the serial agwor4tms require one gradient evaluation and a uni-

variate search er iteraticn. Hence, t.-e cc::ruter tine needed per

iteraticn by e-ach method wizl be nearly the sacie ocrvided t..e parallel

operations are d ue simultaneously.

7' we assume the paale algor-atnls are executed on the

parallel c-oputer dscussed r Ceo. oon - .1. and that the criterion above

is used to compare the method, then the resuins in Table 5.10 indicate

that the parallel algorithms would require significantly less time to

Tne cycle of either m P o of en the gradient of

eqn. (5.3.2-i), using this :. .rmati . to rcnst -uot a directior of

search, and r r search in this direction.

18o



AD-ALG7 914 RENSSELAER POLYTECHNIC INST TROY NY DEPT OF ELECTRIC-ETC F/G W/2
PARALLEL COMPUTATION FOR DEVELOPING NONLINEAR CONTROL PROCEDURE..-ETC(U)

JUL &I H KAUFMAN, Rt TRAVASSOS AFOSR-77-391

UNCLASSIFIED AFWALTR813016 N

IIIIIIlINIEu....||||



IC.)

S 722

+I C-,

0 Hw (V C
cli 0 0

C5 0 0

181t



/ CO

I I II
0 0

0 0

182 0



i \ I\

H" ' I ,

I ' \ *1-
e/

- H

C m - -

N NDo 0 0 - o N
o 0 0 0 o o

i I I

183



C) 0
.6 4.

0 t CT
I I I C D

184 L

L5 (5

C~j K) ,

CV



DLvc a;I, Opt~izatllo at a HI&Wi Ar-1e of Atack

F Total 3U~ber I~ & br Resultan% optimal
P-I-LaZLt Oj of -'cion Of Oradlsbnat Nwber Optimal Cost

A.rtQ ! iJ~uaions 7valuatcm~ of 1teraios Gains i

15 - 8 0.1380 0.013562
0.38185
0.243014

.  
125 1)4 14 0.13808 0.'013542

0 .3818k

MS95 0. .' 0.3811, 0.10135.2

0.24301
C!M 1,6 -12 0.13809 0.:0135L.2

C.24.302

,. 77 10 9 0.13800 0.10135L.2
0 = o.38175

I C.24.297

Me 1 96 11 C 0.13791 0.10-'3512c 0 o- l .384,65,

,_ 0.24.288

.138732 0.1 1354
10
-3  0.385651

:r- -- ' =':'?erfo,..n-c .ndex: J 3.599863

:-.'z .: State: xtO) - (0.-5759586 0 3)

:il-.-'& .cioe of Gai!ns: K - (0 0 0)

185



execute compared with the serial algorithms. 1.so, the results in

Table 5.10 show that the parallel methods used fewer function evalua-
*

tions to achieve convergence. Thus, it can be concluded that the

parallel algorithms can be very effective in determining the control

gains needed by flight control systems.

5.3.3 Timing Consideration

.n this section, the execution time required for conver-

gence to a set of optimal control gains will be estimated for the F-8

aircraft. First this will be done assuming a completely sequential

algorithm is'executed on a serial computer. Secondly, the execution

time will be estimated for a completely parallel algorithm which is

assumed to be executed on the parallel computer described in Section

4,J. Finally, these two estimates will be used to estimate the speed-

up due to parallelism.

From the high angle cf attack model of the F-8 aircraft,

it is easily verified that n = 6, Arhs = 21, and Mrhs = 32. If we

let N = 100, t = 200 nsec, t = 1000 nsec, and L = 8, then for thea m

DFP method with APC integration the execution time per iteration is

0.1277 seconds using eqn. (4.2.L-l2). On the other hand, for the PVM

algorithm with PPC42 integration, the execution time per iteration is

0.06316 seconds using eq,. (4.2.2-l4). In this case, the speed-up due

to parallelism is simply 0.1277/0.06316 = 2.02 which shows that one

iteration of the parallel algorithms will execute about twice as fast

as the serial algorithms. Note that a further reduction in computation

time can be achieved if the RHS evaluations were performed by separate

*

One function evaluation includes all arithmetic operations needed to
evaluate eqn.(5.3.2-l).

186



processors. i.e., one processor for each state variable.

If this is considered at the expense of additional pro-

cessors, then the execution time for one iteration of the PVM algo-

rithm would be only 0.0106 seconds. This time the speed-up due to

parallelism is 0.1277/0.0106 = 12.05, which is rather significant.

Other possibilities, along with the processors required, are shown in

Table 5.11.

To estimate the time required for convergence to a set of

optimal gains, the results shown in Table 5.10 and Table 5.11 can be

used. For example, the execution time of the DFP/APC and PVM/PPC42

algorithms could be estimated as follows. From Table 5.10, the serial

DFP algorithm required 124 iterations to converge. Using this fact,

and the fact that the execution time for one iteration of the DFP/APC

algorithm requires 0.1277 seconds (see Table 5.11) when one processor

is available, the execution time required for convergence is simply

124 x 0.1277 = 1.7878 seconds. On the other hand, if the PVM/PPC42 algo-

rithm is executed using 8 processors, then che time required for con-

vergence is only 8 x 0.0106 = o.08248 seconds from the results shown

in Table 5.10 and Table 5.11. Thus, if a completely parallel algorithm

is executed on the parallel computer described in Section 4.1, the

timing required for control computations might be rapid enough to

permit adjustment of the control gains in real time. Finally, the

advantage of using a completely parallel algorithm is further enforced

by computing the speed-up due to parallelism based on the total time

required for convergence. From the calculations above, the speed-up

is 1.7878/0.0848 = 21.08 which indicates that the parallel algorithm

converged more than 20 times faster than the serial algorithm.
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5.4 Evaluation of Adaptive Controller Performance

The purpose of this section is to evaluate the performance

of the explicit adaptive control scheme discussed in Section 2.3.-

This is qccomplished by initially designing a feedback controller in

Section 5.4.1 which will cause the F-8 aircraft to follow a nominal

pitch rate command of 5 /sec based upon a nominal set of aerodynamic

parameters. In Section 5.4.2, the effectiveness of the parallel

algorithm is demonstrated by adjusting the feedback control gains on-

line in response to a 100 /sec pitch rate command. Finally, in Section

5.4.3, the feedback control gains will be adapted in response to vari-

ations in the aerodynamic parameters of the F-8 aircraft using a moving

window, explicit adaptive control scheme.

5.4.1 Gain Optimization

In this section, the problem is to find a feedback control

law which causes the F-B aircraft to follow a pitch rate command. The

pitch rate command considered in this example was:

50°/sec t E [0, 2]

0= (5.14.1-1)
01 otherwise

and the state model (valid for low angles of attack) considered was:

= ( - - 0.088 x ) x - 0.877 x + o.47 x2
1 1 3 1l 1

+ 3.846 x1 -3 0.215 u + 0.28 u x 2 + 0.47 u2 x1

* 0.63 u3 - 0.019 x (5.4.1-2)
2

:2 = x 3  (5.-.1-3)

3 = -0.396 x3 - h.208 x - 0.7 x2 - 3.564 x3

- 20.967 u + 6.265 u x2 + 46 u2 xI + 61.4 u3  (5.4.1-4)

4= 0.
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where x1 (t), x2 (t), x 3(t), and x4(t ) represent the angle of attack,

pitch angle, pitch rate, and pitch rate command, respectively.

The structure of the controller is shown in Figure 5.20 and

the control law to be optimized is:

u(t) = K1 x1 (t) + K2 x2 (t) + K 3 x3 (t)

+ G(x4(t) - x 3(t)) (5.4.1-5)

Since the objective is to find the control gains K1 , K2 , K3 , and G

which cause the pitch rate of the F-8 aircraft to track the pitch rate

command, the following performance index was specified:

T f xm Q x + r u 2] dt (5.4.1-6)
0

where

F0.25 0. 0. 0.1
0. 0.25 0. 0.

Q 0. 0. 1000.0 -1000.0 and r 1.0.

0. -1000.0 1000.0]

Initially, the unknown control gains were selected as K = -0.1, K2

-0.001, K3 = -0.04 and G = -0.4 since these values caused the F-8

aircraft to remain stable over the entire mission time interval [0, 5].

At this point, the direct gain optimization algorithm dis-

cussed in Section 2.2.3 was used to optimize the control gains assuming

the initialstate of the F-8 aircraft was x 0 = (0 0 0 0 .08 7 )T
. Theper-

formance of the different methods considered are shown in Table 5.12.

The results indicate:

e Each of the minimization procedures converged to a set of gains

which cause the tracking error (performance index) to be reduced

from J = 0.635004 x 103 initially to J = 0.559612 x 103 upon con-

vergence.
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* The PVM algorithm required nearly half the function and gradient

evaluations to converge compared with the serial DFP algorithm.

By substituting the optimized control gains shown in Table

5.12 into eqn. (5.4.1-5), the optimized control law can be obtained as follows:

u = -0.128 xI - 0.009 x2 - 0.046 x 3 - .427 (x, - x3)

(5.4.1-7)

To determine how well this controller would cause the F-8

aircraft to track a 5 /sec pitch rate command, a simulation was per-

formed. The pitch rate command and the pitch rate response which

resulted from applying the optimized control law (eqn.5.4.l-5) are

shown in Figure 5.21. Looking at Figure 5.21, it is clear that the

pitch rate response of the F-8 aircraft tracked the pitch rate com-

mand relatively well. Thus, our nominal design is complete.

5.4.2 Adaptive Gain Optimization

In the previous section, the controller given by eqn.

(5.4.1-5) is optimal only if the initial state of the F-8 aircraft is

at the origin and a 50 /sec (0.087 radian/sec) pitch rate command is

considered. If, however, the magnitude of the pitch rate command is

0different from 5 /sec, the gains will have to be reoptimized. Thus,

it is of interest to determine how rapidly the parallel algorithms

can adjust the feedback gains in response to a different pitch rate command.

To illustrate this, suppose the pitch rate command is 100 /sec

(0.174 radians/sec), i.e., twice the magnitude of the nominal pitch rate,

and the initial state of theF-8 aircraft is (0 0 0 0.174). The problem

is then to reoptimize the control. gains to account for the new pitch

rate command.

192

--J



0 0

C x x
C Cd

.- 4U C\j N"
:J0 -i -4

(I C-) \D \

r- CC) U-C\j' LrSC\Jr (1)

r-q --lE S: C ON Q\0 r.- CO C\ \Z t-
x -4 rjH C\j 0 _::C\j C\j 0 -::C4

0 ) 00 0 000o 0000

0

0)

'00
0

C-

IV0

Cd co t-

-4 >
(D 0)E40

0~ z

- 4 .

-4-

55 Lr

E--l 0 W

0

EQ 0

193



Eu

C-)

t- U-)

I r~z0

I0S SDP ) P 4T'

19



This was accomplished by performing only two iterations of

the direct gain optimization algorithm which was initialized with the

optimal gains for the nominalI 5 0/sec pitch rate command case. The re-

sults are shown in Table 5.13.

The results indicate that after only two iterations of the*

PM! algorithm, convergence to the optimal set of control gains is

possible. However, if the DFP algorithm is utilized to adapt the con-

trol Eains, the gains obtained after adaptation were still relatively

far from optimal.

7n view of these results, and the fact that the execution

time required for one iteration of the parallel algorithms has been

shown to be much shorter than the sequential methods, it appears that

the parallel algorithms may be applicable to update the control gains

in real time. This concept is pursued further in the next section.

5.i4.3 Moving Window Adaptive Gain Optimization

As a final topic in this chapter, an explicit adaptive

controller will be designed to stabilize the F-8 aircraft as the

aircraft's center of gravity is noved aft during flight.

To determine the point at which the F-8 aircraft becomes

unstable, the differential pitch rate was computed analytically

using the expression:

ax C= x3  d.(5.4-3-1)

where di is an incremental change in the distance between the wing

aerody-namic center and the aircraft's center of gravity (see Figure

5.11).
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To evaluate eqn. (5.4.3-1), the pitch rate equation below

was utilized.

k M/I+ (C0  + 1 x 2 x 3  C0 x2/23 wy L Li LXl - L 1V# V % W

- e 2 x3/2) - S/I - {CL0t + c l (x - E - a x + u)

L w1y Lt L 2.1 0 e I

- C2 (x -0 -a + u) 3 + a u)
Lt  e e

(l - (x1 - 0 - ae xI + u) 2/2) j St  t /ly

- c x3/1y (5.4.3-2)

By substituting the aerodynamic data shown in Table 5.14 into eqn.

(5.4.3-2) and using the fact that k + t = 16.889, it can be shownt

with some effort that

9: 3- = 5.27 x- 22.5 x 3 + 1.23 u - o.614 u3 - 0.7748 u x2

2
3.24 x '1 (5.4.3-3)

Substituting eqn. (5.4.3-1) into eqn. (5.3-6), the modified equations

of motion of the F-8 aircraft become:

22:il 1  - x - 0.088 xi) x3 - 0.877 x + o.47 x

3 2 2
+ 3.846 x 0.215 u - 0.019 x2 + 0.28 u

+ 0.47 u2 xI + 0.63 u3  (5.4.3-4)

x2 x 3 (5.4.3-5)

197



TABLE 5.14: F-8 AIRCHAr DATA

Mach = 0.85 Altitude = 30,000 ft.

C 0 =Lw  -- c

C_1  = C1  = 4.0w L 1

C2  C2  = 12.0

ae = 0.1

S = 375 ft2 (3375 m
2)

st  = 93.4 ft2 (8.41 m2)

m = 667.7 slugs (9773 kg)

ae =0.75

0=0

Cm  =0
a.c.

= 11.78 f. (3.53 m)

I = 96,800 slug ft2 (127,512 kg-m2 )

= 0.189 ft (0.06 m)

z = 16.7 ft (5.01 m)

S= 318.0116
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= 2
3 -0.39' x3 + (5.27 & - 4.208) x- 0.47 xI

3 2 2

- 3.564 x3 _ 20.967 u + 6.265 u x2 + 46. u x

+ 61.h u3 + (1.23 u - 22.25 x - o.614 u3

-0.7748 u x 2 - 3.24 u 2 xI dt (5-4.3-6)

Note that if dt = 0, then eqns. (5.4.3-h) - (5.4.3-6) reduce to the

low angle of attack model of the F-8 aircraft given by eqns. (5.3-4) -

(5.3-6).

By increasing dk incrementally from dt = 0 to dt = 1.5 in

eqns. (5.4.3-4) - (5.h.3-6), the point at which the F-8 aircraft

becomes unstable can be determined by monitoring the open loop response

of the aircraft and determining when the response doubles in amplitude.

From the open loop response, it was concluded that under nominal

conditions (d2 = 0), the aircraft is stable. However, as di is increased

the aircraft became unstable for dt > 1.

In view of these results, the remainder of this section is

concerned with the design of an explicit adaptive controller which

will stabilize the F-8 aircraft as di is increased from di = 0 to di =

1.5. Since the direct adaptive control algorithm discussed in Section

2.2.3 must be initialized with a set of stabilizing gains, such a set

of gains must be determined a priori based upon a set of nominal condi-

tions.

As indicated earlier, the nominal conditions for the example

under consideration are dZ = 0 and a nominal initial state of x0 =

(0.349 0 0). If we restrict the control to be linear of the form:
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u(t) = K1 x (t) + K2 x 2(t) + K3 x(t) t > 0 (5.L.37)

then the problem is simply to find the control gains K1, K2 and K3

which minimize a suitably defined performance index such as:

5 T2
J 5 (xT(t) Q x(t) + r u 2 (t)) dt (5.4.3-8)

0

subject to the F-8 aircraft's equations of motion described by eqns.

(5.4.3-4) - (5.4.3-6). The Q and r matrices were selected as:

[0.25 0. 0.1

Q 0. 0.25 0. and r = 1.0
0. 0.2

since this choice of Q and r gave good response in previous examples

when dk = 0. Because the open loop response of the F-8 aircraft is

stable over the entire mission time inverval [0, 5], the control gains

were initially set to zero.

At this point, the direct gain optimization procedure was

employed to optimize the control gains. The resulting control law

was determined to be:

u(t) = 0.1416 x1 (t) + 0.8036 x2(t) + 0.6488 x 3(t)

t > 0 (5.4.3-9)

Now that the nominal design is complete, the optimized control gains

K = 0.1416, K = 0.8036, and K = 0.6488 can be used to initialize
1 2 3

the adaptive control algorithm.

Before the direct adaptive control algorithm described in

Section 2.3.2 can be utilized, the adaptation times tl, t2 ' --. tN

must be specified a priori. However, since the adaptation times are,
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in general, chosen somewhat arbitrarily, uniform adaptation intervals

were considered. In particular, since the duration of the mission time

is only five seconds, the adaptation times were selected as tI = 1,

t2 = 2, t3 = 3, and th = 4. Also, in the simulations it was assumed

that di varies linearly from the stable condition (d£ = 0), to the

unstable condition (dk = 1.5) as follows:

dk(t) = 3/10 t V t C [0, 51 (5.4.3-10)

Because only the effectiveness of the control update algo-

rithm was being studied in this example, it was assumed that perfect

estimates of di were available as needed. The adaptive control scheme

was evaluated by performing one iteration of the direct gain optimiza-

tion procedure assuming the actual values of dk were available at the

adaptation times.

To determine if the parallel algorithm could indeed optimize

the control gains more rapidly than serial methods, the PIN and DFP

algorithms were considered. The resul;s obtained are shown in Tables

5.15 and 5.16.

The results indicate that PVM algorithm could indeed reduce

the performance index more rapidly than the sequential DFP method.

This is more clearly revealed by summing the performance index values

after adaptation for each method. For the PVM algorithm, this amounts

to:

14

: 0.042JiO

201



y re C

o0 to C

~E e 1
le C 

1  
10

Ls K K

&

£~ --M- C>

I 0c COC coo C-

Zr ;I. ccQ -,

CC

202



m er 0 m

o0 C, c 00

- rc 1- r-

203



while for the DFP method the

i m406.
i=0

Note that a reduction in cost of approximately 10% may be realized

if the paral.lel method is used in this case.
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CHAPTER SIX

CONCLUDING REMARKS

In Section 1.2, a survey of existing parallel identifica-

tion, estimation and control algorithms and an evaluation of their

usefulness was made in terms of accuracy, speed, processor require-

ments, and numerical efficiency. From this survey, it was clear that

the major problems with existing methods were the lack of accuracy

and excessive computation time. Also, it was revealed that parallel-

ism can be employed to alleviate such problems. Thus, the need for

developing more efficient parallel procedures based upon modern non-

linear estimation and control theory was established. This fact led

to the development of several identification, estimation and control

algorithms which employ a high degree of parallelism but at the same

time were not extravagant in the utilization of processing elements.

Whereas most existing estimation and control algorithms had been

designed using approximate liiearized equations of riotion, the parallel

procedures developed in this thesis utilize the nonlinear process

equations directly.

The nonlinear estimation and control algorithms developed

in this thesis employ parallel minimization methods to accelerated

convergence, parallel methods for integrating ordinary differential

equations to facilitate computations, and a procedure based upon par-

titioning the integration interval to improve accuracy and reduce the

sensitivity of the overall *algorithm.

The major contributions which resulted from investigating
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each phase of the nonlinear estimation and control algorithms con-

sisted of:

*Developing a class of parallel rank-two quasi-Newton methods for

unconstrained minimization.

*Establishing a strategy for optima.lly selecting the number of

subintervals and mesh points associated with the parallel shooting

approach to solving nonlinear two-point boundary value problems.

*Developing a procedure which automatically adjusts the step size

of a parallel predictor-corrector integration scheme to maintain

a desired level of accuracy.

9 Demonstrating with representative examples that the newly de-

veloped parallel algorithms do indeed perform better than existing

sequential methods in terms of speed, accuracy, and reliability.

& Applying the PQ~N method, PVM algorithm and the CM method to solving

dynamic optimization problems (such as nonlinear estimation and

control problems) rather than static optimization problems involv-

ing algebraic functions.

The remainder of this chapter is divided into three sections.

In Section 6.1, some conclusions are drawn based upon the results

obtained as a consequence of conducting this research. In Section 6.2,

some recommendations are made, and areas of future research are sug-

gested in Section 6.3.
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6.1 conclusions

In this section, some conclusions are drawn based upon the

analy-tical and empirical results obtained in Chapters Three, Four and

Five.

From the results in Chapter Three, it can be concluded that

without question the parallel minimization algorithms do indeed re-

quire significantly fewer iterations for convergence compared with

serial methods (see Tables 3.1-3.6). In fact, it was shown analyti-

cally that if the PQN algorithm is utilized to minimize a quadratic

function in n variables, then convergence to the location of the

minimum is guaranteed in only one iteration provided n + 1 degrees

of parallelism are employed (see Theorem 3.2 and Table 3.1). Since

the PQN method was generally more robust than the PVM algorithm, this

result suggests that parallel double-rank methods might be more robust

than parallel rank-one methods (see Figures 3.1-3.6).

From the timing equations derived in Chapter Four and the

timing results in Chapter Five, it was revealed that one iteration

of the parailel or serial) nongradient algorithms required much less

time to execute than did the (parallel or serial) gradient-dependent

methods, although more iterations of the nongradient methods were

usually required for convergence (see eqns. (4.2.2-11) - (4.2.2-14)

and Tables 5.8, 5.9, and 5.11). Also along these lines, it was shown

that one iteration of the indirect control algorithm required signifi-

cantly more time and processors to execute compared with the direct

gain optimization procedure (see Tables 5.8 and 5.9). This observation

was also valid for the indirect and direct SAP estimation algorithms

as well.
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From the simulations performed in Chapter Five, it can be

concluded that although the gradient of a highly nonlinear function

may be difficult at best to compute numerically, the convergence

properties of the gradient-dependent algorithms were clearly prefer-

able to the nongradient methods (see Tables 5.1-5.7). From the re-

sults shown in Figure 5.2, it was revealed that the robustness of the

FVM algorithm was enhanced the most when parallel methods rather than

serial methods were employed to integrate the state and costate equa-

tions associated with the Van der Pol system. This result was obtained

using ordinary shooting. However, when parallel shooting was con-

sidered, the number of unknown boundary conditions which must be found

was artificially increased from 2n to n(2N-l) where n is the order of

the system and N is the number of subintervals. Despite this fact,

as the integration interval is partitioned into many subintervals, the

sensitivity of the solution will be reduced, and in general, the

solution obtained will be more accurate. Unfortunately, since a high

order optimization problem must be solved (i.e., n(2N-l) unknowni must

be found), the number of iterations required for convergence increases

as well (see Tables 5.6 and 5.7).

When the AMvS algorithm was used to optimally select the

mesh points required by the parallel shooting algorithm, it was re-

vealed that the local truncation error could indeed be minimized,

although many iterations were required here also. In fact, it was

shown that a 20% improvement in accuracy was possible by employing

the ANS algorithm (see Section 5.1.3).

From the SAP estimation results obtained in Section 5.2, it

can be concluded that even if poor estimates of the unknown initial
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state and parameters of the T-33 aircraft were available initially,

convergence to the true initial state and parameters was possible even

when the measurement data was extremely noisy (see Table 5.5).

From the results obtained in Section 5.3, it can be con-

cluded that the response of the F-8 aircraft could be improved signifi-

cantly if the control was designed by employing the nonlinear control

algorithms developed in Section 2.2. In particular, it was revealed

that it was better to design a simple feedback control law using the

F-8 aircraft's nonlinear equations of motion directly rather than

to approximate the equations of motion and employ linear quadratic

regulator (LQB) theory or utilize a more complex control law.

Finally, it can be concluded from the adaptive control re-

sults obtained in Section 5.3, that the direct gain optimizat--'on pro-

cedure might be implemented in an on-line adaptive type fashion. This

follows from the fact that after only two iterations, the PVY. algo-

rithm converged to an optimal set of control gains while after two

iterations of the serial DFP method, Tche control gains remained

relatively far from optimal (see Table 5.13).

6.2 Recommendat ions

In view of the results obtained in this thesis, the follow-

ing recommendations are in order.

*The weighting parameter, c, which defines a set of basis vectors

for the PVM, PBFS, and PDFP methods, should be set to C = 106 since

this choice of c gave the best overall performance (see Figures

3.1-3.6).
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In view of the superior robustness characteristics of the PBFS

method, it might be considered rather than the PDFP and PVM

methods, although the PVM method did converge faster than the PBFS

method in many test cases (see Tables 3.1-3.6).

* If convergence problems are encountered when using the PQN method

to solve nonlinear estimation and control problems, the following

modifications of the basic procedure are recommended:

1. Update the inverse Hessian, H(£+I ) in Step 4 of the

PQN algorithm only if d yj > 0 V j = 1, 2, ..., n. As indicated

by Proposition 3.4, this modification will guarantee that the inverse

update will be positive definite.

2. Replace Step 3 of the PQN method with the following:

a. Compute n + 1 gradients of f(x) at n + 1 distinct

points in parallel:

g(x (k ) ) and gj = g(x (t) + c d J = 1, 2, ..., n

b. Compute the gradient difference in parallel:

Yj = (gj - g(x (9))/c

In the above modification, c is the same weighting parameter

used to define the basis set

= (oi, I 2 , .. , n) = c In; c > 0.

By performing computations in this manner, the gradients required can

be computed more reliably because the forward integration of the state

and costate equations will remain stable. Note that when f(x) is

quadratic, yj = (c A d )/c = A d for the modified version of Step 3.

210

I.



But since y.j = A d in Step 3 originally, the remaining steps of the

PQN method are unaffected by the modifications cited above.

In view of the results presented in Section 3.2.3, the

PPC42V integration scheme is recommended for solving the required

initial-value problems (IVP's) since the accuracy of the solution can

be specified a priori. Also, because the PPC42V method has been de-

signed to execute on separate processors, the solution to an IVP can be

obtained extremely rapidly.

With regard to the nonlinear state and parameter (SAP) esti-

mation algorithms, the direct SAP estimation algorithm should be used

only if process noise is omitted from the state model. On the other

hand,,if process noise is included in the state model, then the indirect

method should be considered. If sensitivity problems are encountered,

the parallel shooting method with adaptive mesh selection has proven

to be very effective in alleviating such problems.

With regard to the control algorithms, the direct gain

optimization procedure is highly recommended in view of the fact that

near optimal response was obtained without an excessive am~ount of

computation (see Figures 5.6-5.10). Also, this method should be

seriously considered because the equations of motion of a highly non-

linear system can be utilized directly in the control system design

process.

6.3 Areas -f Future Research

In this section, some areas of future research are suggested.

One aspect of the PQN method which could benefit from addi-

tional research is the generation of a set of mutually conjugate
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directions. In particular, alternate parallel methods should be con-

sidered for solving the linear system of equations required to generate

the direction vectors. Since each row of the C M1matrix defined in

Proposition 3.2 is known once m has been specified, the Gaussian

Elimination procedure [22] might be modified to solve the resultant

linear system in a row-wise fashion. Of course, this modification

should be amenable to parallel computation.

Another area of future research might be the extension of the

parallel variable step size integration method derived in Section 3.2.2

such that the order of the method, as well as the step size, can be auto-

matically adjusted to maintain a desired level of accuracy. This con-

cept was initially investigated by C. W. Gear in reference [46] although

Gear's work was concerned with purely sequential methods at that time.

With regard to the parallel computer described in Section

4.1, future research should be conducted in the following areas:

" Specifying processor add, multiply and transfer times to permit

real1 time estimation and control.

" Estimating memory size and peripheral requirements.

" Studying the effects of wordsize.

" Analytically modeling the reliability of the proposed design and

studying the effects of component failures (such as one of the pro-

cessing elements).

" Determining the feasibility of implementation and cost.
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Another possibility might be to develop a parallel nonlinear

estimation and control algorithm based upon Hamilton-Jacobi-Bellman

(HJB) theory [47]. To illustrate how the control algorithm might be

arranged, consider the optimal control problem:

min V(xo, t) = (x(tf), tf) +ft L(x, u, t) dt (6.3-1)

0

subject to

i= f(x, u, t) t E [to $ t f] (6.3-2)

If we assume that x(to ) = x is known, tf is specified and

x(t f) is unspecified, then the HJB equation which must be satisfied is:

9V(x, t) t) + t)
t + L(x, u, [+ x T f(x, u, t) = 0

(6.3-3)

The boundary condition associated with eqn. (6.3-2) is

simply:

V(x(tf), t f) = (x(tf), tf) (6.3-4)

By defining the Hamiltonian as:

H(x, u, X, t) = L(x, u, t) + XT(t) f(x, u, t) (6.3-5)

then it can be shown that the adjoint variable, X(t), is given by

X(t) = aV(x, t)/ax. From the maximum principle, it is well known that

the optimal controls must satisfy the necessary condition aH/qu = 0.

If this condition can be solved explicitly for u(t), the control will

be of the form:

u(t) = h[x(t), X(t), t] (6.3-6)

But since X(t) = 3V(x, t)/ax, the optimal control is:

u(t) =h[x(t), ;v(x, t)/;x, t3 b37
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By substituting eqn. (6.3-7) into eqn. (6.3-3), the result

is:

3V(X, t) + L(x, h[x, *V , t], t)

+ F t)] f(x, L, t)= .0 (6.3-8)

The problem then is to find the continuous function V(x, t)

which satisfies eqn. (6.3-8) and the boundary condition (6.3-4) subject

to the dynamic constraint (6.3-2).

In view of the above problem formulation, an appropriate

error function might be:

E= f e2 (t) dt (6.3-9)
t

0

where

e(t) = L(x, h~x, 21, t], t)

Favi] T VY
+ - T f(x, h(x, x, t), t) +

Note that if the time functions V(x, t) can be found such

that eqn. (6.3-9; is identically equal to zero and the constraints

given by eqn. (6.3-2) and eqn. (6.3-h) are satisfied, then we would

have a solution to the original optimal control problem For computa-

tion reasons, however, V(x, t) is usually approximated by a power

series of the form:
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n n n

V(x, t) = c~ xj + L CiX
J=l J=l k=l

n n n

+c.~x ~x (6.3-1o)

i=l J=l k=l

where the c's are time functions which must be determined. However,

because the c's are functions of time, the problem at hand is more

difficult that it appears. One way to overcome this difficulty is to

approximate the c's using a Taylor series as follows:

c(t) = d0 + d1 (t - to ) + d2(t - to) 2 + O((t - to)3)

(6.3-11)

where the d's are constants which must be determined.

Thus, the problem has been converted to one of finding a set

of constants rather than time varying unknowns. Since we are now

confronted with solving a finite-dimensional minimization problem, the

parallel minimization algorithms discussed in Section 3.1 can be used

to optimize the d's in eqn. (6.3-11). Also, the parallel integration

methods described in Section 3.2 may be used to integrate eqn. (6.3-2)

which is necessary to evaluate the error function (6.3-9).

On the basis of the results obtained in this thesis, it is

felt that the parallel Hamilton-Jacobi-Bellman (PHJB) method outlined

above should also benefit a great deal from the use of parallelism.

Since the control gains obtained by this method are, in general, time

varying, the PHJB method should provide better control than the direct

gain optimization procedure presented in Section 2.2.3. Of interest

then, would be a comparison of the response of a given system due to
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the control laws designed by each method along with the number of pro-

cessors required to implement each procedure. Using this information,

a trade-off could then be made between the number of processors and

the response of a given system.

Finally, it is hoped that these remarks and the encouraging

results obtained in this thesis motivate future research in this area.
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APPENDIX

PARALLEL MINIMIZATION. PROCEDURES

In this appendix, the Chazan-Miranker method, the parallel

variable metric (PVM) algorithm due to Straeter, and the parallel

Jacobson-Oksman (PJO) procedure reported by Straeter and Markos are

given for reference. These methods are useful in minimizing a func-

tion f: R-n - l which is assumed to be continuous and differentiable

in each variable. The gradient of f will be denoted as the function

g: Rn - R. With these preliminary remarks, the parallel minimization

methods can be presented formally as follows:

Chazan-Miranker Procedure

Let k represent the iteration number and define the follow-

ing quantities:

* UP L {up l , up2 , .... UPn = a set of n linearly independent unit

vectors.

* 0 , 1 1, 2, .... - a sequence of positive scalars tending to

zero.

. WPn A up. if i L i mod n where i = 1, 2, ... , n

* * PT, £ 1, 2, ...,L a sequence of n vectors

* vJj, J 1, 2, ...,n, Z = 1, 2, ..., L a sequence of n vectors

called search direction vectors.

Then the value of x which minimizes f(x) may be obtained by performing

the following steps:

221



Step 1:

Determine the scalars, a +l' by performing simultaneously

the univariate minimizations

min f(w£ + aj  ) j 1 i2, n

where

wk g PT1 + v i
i<_j

j+1 Z 1 +

Step 2:

Update the n vector, PT, such that:

PTl1  iPT1+ (I+a )v /lv 1  II+l -+l t-1 Y.-

Step 3:

Compute f(PT+) and terminate the algorithm if:

lf( 1 f(pT 1)1

is sufficiently small; otherwi.se, continue to Step i.

Step 4:

Update the search direction n vectors, such that:

vJr = (aJ+ i ) 1 / HV1 Jll J+lV kl Z+ .lI I+ vI+j

J = 1, 2, ... , (n-i)

Step 5:
th

Update the n search direction vector by selecting one of

the linearly independent unit vectors from UP as follows:

n wpn
V +n+l - +n+l W 1
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where

n
WP is chosen cyclically from the set UP.2.+i

Set k - £ + 1 and return to Step 1.

Parallel Variable Metric Algorithm

Let Z denote the iteration number and define:

* A { I , 02, ... , a as a set of n linearly independent vectors.

0 V 0 as any positive definite nxn matrix; typically V0 = In .

Then the value of x which minimizes f(x) may be obtained by performing

the following steps:

Step 1:

a. Evaluate the function and its gradient at n distinct points simul-

taneously in parallel.

f(x k + a ) and gj = g(x . + j)

V J = 1, 2, ... , n

b. Compute g' gj and terminate the algorithm if

T
gJ gT J = 1, 2, ..., n

is sufficiently small; otherwise, continue to Step 2.

Step 2:

a. Compute y. = x£) j = 1, 2, ... , n

b. Compute the residual vectors
J-1 T

rA V yj - - rk = 2 ... n

k=l rk Yk

Tf the denominator in step 2b is zero for any term, that term is
deleted from the sum.
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where

r I  = VP-1 Y1  l

c. Compute the n scalars, TV and modify the %etric:

Tj T
T 6 ( yT r)-' for y Trj 0

otherwise

£n

V£ =V 2 _I + T 3 r r T j i, 2, ..., n

J=l

Step 3:

a. Determine the scalar a by performing a single univariate search.

min f(x. + ak s£)
a k

where

s2 = - Vx g(xI)

b. Update the n vector x, such that

xz+ I = xz + az sk

c. Compute f(x .+l ) and g(x +l) simultaneously in parallel and termi-

nate the algorithm if

glg(xy.+1l ) 12

is sufficiently small; otherwise, set I L 2 + 1 and return to

Step 1.
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Parallel Jacobson-Oksman Procedure

Let k denote the iteration number and define:

aG1 a 2  ..., O n+) as a set of n+l linearly indepen-

dent vectors

Then the value of x which minimizes f(x) may be obtained by perf¢:rming

the following steps.

Step 0"

Let x0 be the initial estimate of the minimum of f(x)

and compute f(x0 ) and gx 0 ). Set 2 = 0.

Step 1:

Define:

Xj xZ + 1, 2, ... , n+l

and evaluate f(x ) and g(x ) in parallel.

Step 2:

Set Rn+2 = x and solve the linear system:

C Ot v

where

af(SEi i = 1, 2, ... , n+2

x j = 1,2, ... , n

Cij f(Ri) i = 1, 2, ... , n+2

J = n+l

-i i = 1, 2, ... , n+2

J = n+2

- T, , ]T
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and

vj - ( ) J 1, 2, n+2

Step 3:

Compute the search direction vector:

S9 x

and evaluate f(0) and g(8). If I1g()II is sufficiently small, stop.

If not, and if f(s) < f(x), then set x9 +4 = , 1 Lt+l, and return

to Step 1. Otherwise, perform a line search:

min f(x t + A s9 )

and set x 2+I = + X , £ k+1 and go to Step 1.
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